Acta Neuropathologica

, 122:637 | Cite as

A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat

  • Till Milde
  • Susanne Kleber
  • Andrey Korshunov
  • Hendrik Witt
  • Thomas Hielscher
  • Philipp Koch
  • Hans-Georg Kopp
  • Manfred Jugold
  • Hedwig E. Deubzer
  • Ina Oehme
  • Marco Lodrini
  • Hermann-Josef Gröne
  • Axel Benner
  • Oliver Brüstle
  • Richard J. Gilbertson
  • Andreas von Deimling
  • Andreas E. Kulozik
  • Stefan M. Pfister
  • Ana Martin-Villalba
  • Olaf Witt
Original Paper

Abstract

Incompletely resectable ependymomas are associated with poor prognosis despite intensive radio- and chemotherapy. Novel treatments have been difficult to develop due to the lack of appropriate models. Here, we report on the generation of a high-risk cytogenetic group 3 and molecular group C ependymoma model (DKFZ-EP1NS) which is based on primary ependymoma cells obtained from a patient with metastatic disease. This model displays stem cell features such as self-renewal capacity, differentiation capacity, and specific marker expression. In vivo transplantation showed high tumorigenic potential of these cells, and xenografts phenotypically recapitulated the original tumor in a niche-dependent manner. DKFZ-EP1NS cells harbor transcriptome plasticity, enabling a shift from a neural stem cell-like program towards a profile of primary ependymoma tumor upon in vivo transplantation. Serial transplantation of DKFZ-EP1NS cells from orthotopic xenografts yielded secondary tumors in half the time compared with the initial transplantation. The cells were resistant to temozolomide, vincristine, and cisplatin, but responded to histone deacetylase inhibitor (HDACi) treatment at therapeutically achievable concentrations. In vitro treatment of DKFZ-EP1NS cells with the HDACi Vorinostat induced neuronal differentiation associated with loss of stem cell-specific properties. In summary, this is the first ependymoma model of a cytogenetic group 3 and molecular subgroup C ependymoma based on a human cell line with stem cell-like properties, which we used to demonstrate the differentiation-inducing therapeutic potential of HDACi.

Keywords

Ependymoma Cancer stem cells Differentiation Histone deacetylase inhibitor 

Notes

Acknowledgments

The authors wish to thank the family of the patient for their strong support of this study. We thank Sandra Riedinger, Carina Konrad, Mathias Koch, Andreas Lacher, Diana Jäger, Sylvia Kaden, Tina Wiesner, and Andrea Wittmann for excellent technical assistance. T.M. is supported by a grant from the B. Braun Foundation; T.M., I.O., and S.M.P. by a grant from the Wilhelm Sander Foundation; H.E.D. and O.W. through the NGFNplus program by a grant of the Bundesministerium für Bildung und Forschung (BMBF), Germany; H.E.D. by the University of Heidelberg through both the FRONTIER and the OLYMPIA MORATA programs; O.B. by the EU (FP7-HEALTH-F5-2010-266753-SCR&Tox), BMBF grants 01GNO813 and 0315799 (BIODISC), BIO.NRW (project StemCellFactory), and the Hertie Foundation.

Supplementary material

401_2011_866_MOESM1_ESM.xls (23 kb)
Supplemental Table 1 Characteristics of patients included in the gene expression profiling. PFS: progression-free survival; OS: overall survival. (XLS 23 kb)
401_2011_866_MOESM2_ESM.xls (24 kb)
Supplemental Table 2 Antibodies used in this study (XLS 23 kb)
401_2011_866_MOESM3_ESM.xls (24 kb)
Supplemental Table 3 Primers used in this study. F: forward primer; R: reverse primer. (XLS 24 kb)
401_2011_866_MOESM4_ESM.xls (16 kb)
Supplemental Table 4 Calculation of half-maximal effective concentration (EC50), published maximal peak plasma concentrations (max PPC), calculation of EC50/max PPC ratios; HDACi: histone deacetylase inhibitor; VPA: valproic acid; VCR: vincristine; CDDP: cisplatin; TMZ: temozolomide. (XLS 16 kb)
401_2011_866_MOESM5_ESM.ppt (346 kb)
Supplemental Fig. 1 DKFZ-EP1NS forms tumors in vivo in a niche-dependent manner. a Subcutaneously injected DKFZ-EP1NS cells form tumors with histology (right panel) reminiscent of the histology of the subcutaneous metastasis of the patient (left panel), recapitulating the tumor in a niche-dependent manner (original magnification: 100×). Of note, the subcutaneous tumors in mice display a clear cell phenotype, as did the patient’s subcutaneous metastasis. b Intraperitoneally injected DKFZ-EP1NS cells in Matrigel form tumors with compact small round cells, with no morphological correlate in the patient (original magnification: 100×) (PPT 346 kb)
401_2011_866_MOESM6_ESM.ppt (3.1 mb)
Supplemental Fig. 2 Immunohistochemical staining for epithelial membrane antigen (EMA), smooth muscle actin (SMA), and vimentin. EMA, SMA, and vimentin stain positive and xenografts stain comparably to the patient′s tumor. Black and white arrows indicate the typical granular staining pattern for EMA; insets show enlarged areas of the original image. Note the pattern for SMA, where an increase in positivity from patient′s primary tumor to second recurrence can be seen, with the staining intensity of the mouse 1° and 2° xenografts most closely resembling the second recurrence (original magnification : EMA: 400×; SMA and vimentin: 200×). rec: recurrence; 1°: mouse primary xenograft; 2°: mouse secondary xenograft; met: metastasis; s.c.: subcutaneous (PPT 3206 kb)
401_2011_866_MOESM7_ESM.ppt (7.2 mb)
Supplemental Fig. 3 Immunohistochemical staining for CD99, cytokeratin, S100, and synaptophysin. Both the patient′s tumor, recurrences, and metastasis as well as the mouse 1°, 2° orthotopic and subcutaneous xenograft stain negative for CD99, cytokeratin, S100, and synaptophysin (original magnification: 200×). All stainings were tested on positive controls. rec: recurrence; 1°: mouse primary xenograft; 2°: mouse secondary xenograft; met: metastasis; s.c.: subcutaneous (PPT 7,384 kb)
401_2011_866_MOESM8_ESM.ppt (162 kb)
Supplemental Fig. 4 DKFZ-EP1NS cells retain typical aberrations and belong to cytogenetic group 3 and molecular subgroup C. a Exemplary data of FISH analysis of late-passage (passage 30) DKFZ-EP1NS cells cultured in vitro. The left panel depicts changes at chromosome 1p, as shown by loss of one signal for 1p telomere (1pTEL, green) and for 1p36 (red), while retaining the normal two signals for 1q (1q25, aqua). The right panel depicts the monosomy of chromosome 9 (9p11-q11, green, one signal only) and homozygous loss of 9p21 (orange, no signal), the locus of CDKN2A. P30: passage 30. b Assessment of gene expression in DKFZ-EP1NS at different passages (P14-P23) indicative of molecular subgroup identity, as measured by quantitative real-time RT-PCR, relative to normal total brain control. Only genes from subgroup C are all consistently overexpressed, grouping DKFZ-EP1NS cells into subgroup C (PPT 162 kb)
401_2011_866_MOESM9_ESM.ppt (1.2 mb)
Supplemental Fig. 5 A high common proportion of upregulated genes reveals similarity of NSC and DKFZ-EP1NS cells. a Correspondence at the top (CAT) plots reveal a high degree of common proportion of upregulated clones in neural stem cells (NSC) and DKFZ-EP1NS (EP1NS), and to a lesser degree of downregulated genes in NSC and EP1NS. b CAT plots show a high common proportion of up- and downregulated clones in orthotopic and subcutaneous models, and lesser common proportion in xenografts and EP1NS. sc: subcutaneous; ot: orthotopic; primary: primary tumors (PPT 1,239 kb)

References

  1. 1.
    R Development Core Team (2009) A language and environment for statistical computing. vol 1. http://www.mendeley.com/research/r-a-language-andenvironment-for-statistical-computing-2/
  2. 2.
    Agaoglu FY, Ayan I, Dizdar Y, Kebudi R, Gorgun O, Darendeliler E (2005) Ependymal tumors in childhood. Pediatr Blood Cancer 45:298–303PubMedCrossRefGoogle Scholar
  3. 3.
    Andreiuolo F, Puget S, Peyre M et al (2010) Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol 12:1126–1134PubMedCrossRefGoogle Scholar
  4. 4.
    Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedCrossRefGoogle Scholar
  5. 5.
    Casper KB, McCarthy KD (2006) GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci 31:676–684PubMedCrossRefGoogle Scholar
  6. 6.
    Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  7. 7.
    Corona G, Casetta B, Sandron S, Vaccher E, Toffoli G (2008) Rapid and sensitive analysis of vincristine in human plasma using on-line extraction combined with liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 22:519–525PubMedCrossRefGoogle Scholar
  8. 8.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedCrossRefGoogle Scholar
  9. 9.
    Deubzer HE, Ehemann V, Westermann F et al (2008) Histone deacetylase inhibitor Helminthosporium carbonum (HC)-toxin suppresses the malignant phenotype of neuroblastoma cells. Int J Cancer 122:1891–1900PubMedCrossRefGoogle Scholar
  10. 10.
    Fakih MG, Fetterly G, Egorin MJ et al (2010) A phase I, pharmacokinetic, and pharmacodynamic study of two schedules of Vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin Cancer Res 16:3786–3794PubMedCrossRefGoogle Scholar
  11. 11.
    Fan X, Salford LG, Widegren B (2007) Glioma stem cells: evidence and limitation. Semin Cancer Biol 17:214–218PubMedCrossRefGoogle Scholar
  12. 12.
    Feuerborn A, Srivastava PK, Kuffer S et al (2011) The Forkhead factor FoxQ1 influences epithelial differentiation. J Cell Physiol 226:710–719PubMedCrossRefGoogle Scholar
  13. 13.
    Figarella-Branger D, Civatte M, Bouvier-Labit C et al (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93:605–613PubMedCrossRefGoogle Scholar
  14. 14.
    Gaspar N, Grill J, Geoerger B, Lellouch-Tubiana A, Michalowski MB, Vassal G (2006) p53 Pathway dysfunction in primary childhood ependymomas. Pediatr Blood Cancer 46:604–613PubMedCrossRefGoogle Scholar
  15. 15.
    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80PubMedCrossRefGoogle Scholar
  16. 16.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedCrossRefGoogle Scholar
  17. 17.
    Grill J, Avet-Loiseau H, Lellouch-Tubiana A et al (2002) Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet 136:121–125PubMedCrossRefGoogle Scholar
  18. 18.
    Guan S, Shen R, Lafortune T et al (2011) Establishment and characterization of clinically relevant models of ependymoma: a true challenge for targeted therapy. Neuro Oncol 13:748–758PubMedCrossRefGoogle Scholar
  19. 19.
    Hirose Y, Aldape K, Bollen A et al (2001) Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158:1137–1143PubMedCrossRefGoogle Scholar
  20. 20.
    Houghton PJ, Morton CL, Tucker C et al (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49:928–940PubMedCrossRefGoogle Scholar
  21. 21.
    Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104PubMedCrossRefGoogle Scholar
  22. 22.
    Hussein D, Punjaruk W, Storer LC et al (2011) Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro Oncol 13:70–83PubMedCrossRefGoogle Scholar
  23. 23.
    Irizarry RA, Warren D, Spencer F et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2:345–350PubMedCrossRefGoogle Scholar
  24. 24.
    Johnson RA, Wright KD, Poppleton H et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636PubMedCrossRefGoogle Scholar
  25. 25.
    Kaatsch P, and Spix C (2008) German Childhood Cancer Registry—annual Report 2006/2007 (1980–2006)Google Scholar
  26. 26.
    Kleber S, Sancho-Martinez I, Wiestler B et al (2008) Yes and PI3 K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13:235–248PubMedCrossRefGoogle Scholar
  27. 27.
    Koch P, Opitz T, Steinbeck JA, Ladewig J, Brüstle O (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 106:3225–3230PubMedCrossRefGoogle Scholar
  28. 28.
    Korshunov A, Golanov A, Sycheva R, Timirgaz V (2004) The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer 100:1230–1237PubMedCrossRefGoogle Scholar
  29. 29.
    Korshunov A, Witt H, Hielscher T et al (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28:3182–3190PubMedCrossRefGoogle Scholar
  30. 30.
    Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43PubMedCrossRefGoogle Scholar
  31. 31.
    Kummar S, Gutierrez M, Gardner ER et al (2007) Phase I trial of MS-275, a histone deacetylase inhibitor, administered weekly in refractory solid tumors and lymphoid malignancies. Clin Cancer Res 13:5411–5417PubMedCrossRefGoogle Scholar
  32. 32.
    Ladewig J, Koch P, Endl E et al (2008) Lineage selection of functional and cryopreservable human embryonic stem cell-derived neurons. Stem Cells 26:1705–1712PubMedCrossRefGoogle Scholar
  33. 33.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCrossRefGoogle Scholar
  34. 34.
    Mahller YY, Williams JP, Baird WH et al (2009) Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One 4:e4235PubMedCrossRefGoogle Scholar
  35. 35.
    Mendrzyk F, Korshunov A, Benner A et al (2006) Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12:2070–2079PubMedCrossRefGoogle Scholar
  36. 36.
    Milde T, Oehme I, Korshunov A et al (2010) HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 16:3240–3252PubMedCrossRefGoogle Scholar
  37. 37.
    Milde T, Pfister S, Korshunov A et al (2009) Stepwise accumulation of distinct genomic aberrations in a patient with progressively metastasizing ependymoma. Genes Chromosomes Cancer 48:229–238PubMedCrossRefGoogle Scholar
  38. 38.
    Modena P, Lualdi E, Facchinetti F et al (2006) Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24:5223–5233PubMedCrossRefGoogle Scholar
  39. 39.
    Oehme I, Bosser S, Zornig M (2006) Agonists of an ecdysone-inducible mammalian expression system inhibit Fas Ligand- and TRAIL-induced apoptosis in the human colon carcinoma cell line RKO. Cell Death Differ 13:189–201PubMedCrossRefGoogle Scholar
  40. 40.
    Oehme I, Deubzer HE, Wegener D et al (2009) Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15:91–99PubMedCrossRefGoogle Scholar
  41. 41.
    Ostermann S, Csajka C, Buclin T et al (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10:3728–3736PubMedCrossRefGoogle Scholar
  42. 42.
    Puget S, Grill J, Valent A et al (2009) Candidate genes on chromosome 9q33–34 involved in the progression of childhood ependymomas. J Clin Oncol 27:1884–1892PubMedCrossRefGoogle Scholar
  43. 43.
    Rahman R, Osteso-Ibanez T, Hirst RA et al (2010) Histone deacetylase inhibition attenuates cell growth with associated telomerase inhibition in high-grade childhood brain tumor cells. Mol Cancer Ther 9:2568–2581PubMedCrossRefGoogle Scholar
  44. 44.
    Ramachandran C, Khatib Z, Petkarou A et al (2004) Tamoxifen modulation of etoposide cytotoxicity involves inhibition of protein kinase C activity and insulin-like growth factor II expression in brain tumor cells. J Neurooncol 67:19–28PubMedCrossRefGoogle Scholar
  45. 45.
    Rathkopf D, Wong BY, Ross RW et al (2010) A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol 66:181–189PubMedCrossRefGoogle Scholar
  46. 46.
    Rezai AR, Woo HH, Lee M, Cohen H, Zagzag D, Epstein FJ (1996) Disseminated ependymomas of the central nervous system. J Neurosurg 85:618–624PubMedCrossRefGoogle Scholar
  47. 47.
    Rich JN, Sathornsumetee S, Keir ST et al (2005) ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 11:8145–8157PubMedCrossRefGoogle Scholar
  48. 48.
    Rickert CH (2003) Extraneural metastases of paediatric brain tumours. Acta Neuropathol 105:309–327PubMedGoogle Scholar
  49. 49.
    Robert P, Escouffier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25:257–265CrossRefGoogle Scholar
  50. 50.
    Rousseau P, Habrand JL, Sarrazin D et al (1994) Treatment of intracranial ependymomas of children: review of a 15-year experience. Int J Radiat Oncol Biol Phys 28:381–386PubMedCrossRefGoogle Scholar
  51. 51.
    Schmitt M, Pawlita M (2009) High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res 37:e119PubMedCrossRefGoogle Scholar
  52. 52.
    Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133 + and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120PubMedGoogle Scholar
  53. 53.
    Shu HK, Sall WF, Maity A et al (2007) Childhood intracranial ependymoma: twenty-year experience from a single institution. Cancer 110:432–441PubMedCrossRefGoogle Scholar
  54. 54.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  55. 55.
    Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335PubMedCrossRefGoogle Scholar
  56. 56.
    Thirant C, Bessette B, Varlet P et al (2011) Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS One 6:e16375PubMedCrossRefGoogle Scholar
  57. 57.
    Timmermann B, Kortmann RD, Kuhl J et al (2000) Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int J Radiat Oncol Biol Phys 46:287–295PubMedCrossRefGoogle Scholar
  58. 58.
    van Hennik MB, van der Vijgh WJ, Klein I et al (1987) Comparative pharmacokinetics of cisplatin and three analogues in mice and humans. Cancer Res 47:6297–6301PubMedGoogle Scholar
  59. 59.
    Varan A, Sari N, Akalan N et al (2006) Extraneural metastasis in intracranial tumors in children: the experience of a single center. J Neurooncol 79:187–190PubMedCrossRefGoogle Scholar
  60. 60.
    Voso MT, Santini V, Finelli C et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15:5002–5007PubMedCrossRefGoogle Scholar
  61. 61.
    Yu L, Baxter PA, Voicu H et al (2010) A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro Oncol 12:580–594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Till Milde
    • 1
    • 2
  • Susanne Kleber
    • 3
  • Andrey Korshunov
    • 4
    • 5
  • Hendrik Witt
    • 2
    • 6
  • Thomas Hielscher
    • 7
  • Philipp Koch
    • 8
  • Hans-Georg Kopp
    • 9
  • Manfred Jugold
    • 10
  • Hedwig E. Deubzer
    • 1
    • 2
  • Ina Oehme
    • 1
  • Marco Lodrini
    • 1
    • 2
  • Hermann-Josef Gröne
    • 11
  • Axel Benner
    • 7
  • Oliver Brüstle
    • 8
  • Richard J. Gilbertson
    • 12
  • Andreas von Deimling
    • 4
    • 5
  • Andreas E. Kulozik
    • 2
  • Stefan M. Pfister
    • 2
    • 6
  • Ana Martin-Villalba
    • 3
  • Olaf Witt
    • 1
    • 2
  1. 1.Clinical Cooperation Unit Pediatric Oncology (G340)German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of Pediatric Oncology, Hematology and ImmunologyUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Department of Neurobiology of Brain Tumors (G381)German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Department of NeuropathologyUniversity Hospital HeidelbergHeidelbergGermany
  5. 5.Clinical Cooperation Unit Neuropathology (G380)German Cancer Research Center (DKFZ)HeidelbergGermany
  6. 6.Division of Molecular Genetics (B060)German Cancer Research Center (DKFZ)HeidelbergGermany
  7. 7.Division of Biostatistics (C060)German Cancer Research Center (DKFZ)HeidelbergGermany
  8. 8.Institute of Reconstructive Neurobiology, Life and Brain CenterUniversity of BonnBonnGermany
  9. 9.Department of Hematology/OncologyUniversity Hospital TübingenTübingenGermany
  10. 10.Project Group Small Animal Imaging, Division of Medical Physics in Radiology (E020)German Cancer Research Center (DKFZ)HeidelbergGermany
  11. 11.Division of Cellular and Molecular Pathology (G130)German Cancer Research Center (DKFZ)HeidelbergGermany
  12. 12.Department of Developmental NeurobiologySt Jude Children’s Research HospitalMemphisUSA

Personalised recommendations