Acta Neuropathologica

, 122:565

Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer’s disease

  • David Riascos
  • Dianne de Leon
  • Alaina Baker-Nigh
  • Alexander Nicholas
  • Rustam Yukhananov
  • Jing Bu
  • Chuang-Kuo Wu
  • Changiz Geula
Original Paper


The reasons for the selective vulnerability of distinct neuronal populations in neurodegenerative disorders are unknown. The cholinergic neurons of the basal forebrain are vulnerable to pathology and loss early in Alzheimer’s disease and in a number of other neurodegenerative disorders of the elderly. In the primate, including man, these neurons are rich in the calcium buffer calbindin-D28K. Here, we confirm that these neurons undergo a substantial loss of calbindin in the course of normal aging and report a further loss of calbindin in Alzheimer’s disease both at the level of RNA and protein. Significantly, cholinergic neurons that had lost their calbindin in the course of normal aging were those that selectively degenerated in Alzheimer’s disease. Furthermore, calbindin-containing neurons were virtually resistant to the process of tangle formation, a hallmark of the disease. We conclude that the loss of calcium buffering capacity in these neurons and the resultant pathological increase in intracellular calcium are permissive to tangle formation and degeneration.


Selective neuronal vulnerability Aging Alzheimer’s disease Calcium dysregulation Cholinergic basal forebrain neurons Tangle pathology 


  1. 1.
    Arendt T, Bigl V, Arendt A, Tennstdet A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoffs disease. Acta Neuropathol 61:101–108PubMedCrossRefGoogle Scholar
  2. 2.
    Arikuni T, Kubota K (1984) Substantia innominata projection to caudate nucleus in macaque monkeys. Brain Res 302:184–189PubMedCrossRefGoogle Scholar
  3. 3.
    Armstrong DM, Ikonomovic MD, Sheffield R, Wenthold RJ (1994) AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res 639:207–216PubMedCrossRefGoogle Scholar
  4. 4.
    Baudier J, Cole RD (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J Biol Chem 262:17577–17583PubMedGoogle Scholar
  5. 5.
    Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11:153–163PubMedCrossRefGoogle Scholar
  6. 6.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer’s disease. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  7. 7.
    Bu J, Sathyendra V, Nagykery N, Geula C (2003) Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp Neurol 182:220–231PubMedCrossRefGoogle Scholar
  8. 8.
    Bullock R, Bergman H, Touchon J et al (2006) Effect of age on response to rivastigmine or donepezil in patients with Alzheimer’s disease. Curr Med Res Opin 22:483–494PubMedCrossRefGoogle Scholar
  9. 9.
    Buritica E, Villamil L, Guzman F et al (2009) Changes in calcium-binding protein expression in human cortical contusion tissue. J Neurotrauma 26:2145–2155PubMedCrossRefGoogle Scholar
  10. 10.
    D’Orlando C, Fellay B, Schwaller B et al (2001) Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909:145–158PubMedCrossRefGoogle Scholar
  11. 11.
    de Talamoni N, Smith CA, Wasserman RH et al (1993) Immunocytochemical localization of the plasma membrane calcium pump, calbindin-D28k, and parvalbumin in Purkinje cells of avian and mammalian cerebellum. Proc Natl Acad Sci USA 90:11949–11953PubMedCrossRefGoogle Scholar
  12. 12.
    Demuro A, Mina E, Kayed R et al (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300PubMedCrossRefGoogle Scholar
  13. 13.
    Fine A, Hoyle C, Maclean CJ, Levatte TL, Baker HF, Ridley RM (1997) Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neurosci 81:331–343CrossRefGoogle Scholar
  14. 14.
    Geula C, Bu J, Nagykery N (2003) Loss of calbindin-D28k from aging human cholinergic basal forebrain: relation to neuronal loss. J Comp Neurol 455:249–259PubMedCrossRefGoogle Scholar
  15. 15.
    Geula C, Mesulam M–M (1999) Cholinergic systems in Alzheimer disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 269–292Google Scholar
  16. 16.
    Geula C, Nagykery N, Nicholas A, Wu CK (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67:309–318PubMedCrossRefGoogle Scholar
  17. 17.
    Geula C, Schatz CR, Mesulam MM (1993) Differential localization of NADPH-diaphorase and calbindin-D28k within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience 54:461–476PubMedCrossRefGoogle Scholar
  18. 18.
    Gomez-Isla T, Price JL, McKeel DWJ, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500PubMedGoogle Scholar
  19. 19.
    Hartigan JA, Johnson GV (1999) Transient increases in intracellular calcium result in prolonged site-selective increases in tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J Biol Chem 274:21395–21401PubMedCrossRefGoogle Scholar
  20. 20.
    Iacopino AM, Quintero EM, Miller EK (1994) Calbindin-D28K: a potential neuroprotective protein. Neurodegeneration 3:1–20Google Scholar
  21. 21.
    Ikonomovic MD, Nocera R, Mizukami K, Armstrong DM (2000) Age-related loss of the AMPA receptor subunits GluR2/3 in the human nucleus basalis of Meynert. Exp Neurol 166:363–375PubMedCrossRefGoogle Scholar
  22. 22.
    Khachaturian ZS (1994) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 747:1–11PubMedCrossRefGoogle Scholar
  23. 23.
    Kojetin DJ, Venters RA, Kordys DR, Thompson RJ, Kumar R, Cavanagh J (2006) Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D(28K). Nat Struct Mol Biol 13:641–647PubMedCrossRefGoogle Scholar
  24. 24.
    Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muoz MJ, Jackson GR, Kayed R (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry 49:10039–10041PubMedCrossRefGoogle Scholar
  25. 25.
    Lehericy S, Hirsch EC, Cervera-Pierot P et al (1993) Heterogeneity and selectivity of the degeneration of cholinergic neurons in the basal forebrain of patients with Alzheimer’s disease. J Comp Neurol 330:15–31PubMedCrossRefGoogle Scholar
  26. 26.
    Levey AI, Bolam JP, Rye DB (1986) A light and electron microscopic procedure for sequential double antigen localization using diaminobenzidine and benzidine dihydrochloride. J Histochem Cytochem 34:1449–1457PubMedCrossRefGoogle Scholar
  27. 27.
    Lowenstein DH, Gwinn RP, Seren MS, Simon RP, McIntosh TK (1994) Increased expression of mRNA encoding calbindin-D28K, the glucose-regulated proteins, or the 72 kDa heat-shock protein in three models of acute CNS injury. Mol Brain Res 22:299–308PubMedCrossRefGoogle Scholar
  28. 28.
    Mattson MP, Rydel RE, Lieberburg I, Smith-Swintosky VL (1993) Altered calcium signaling and neuronal injury: stroke and Alzheimer’s disease as examples. Review. Ann New York Acad Sci 679:1–21CrossRefGoogle Scholar
  29. 29.
    Mesulam M, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828PubMedCrossRefGoogle Scholar
  30. 30.
    Mesulam M–M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197PubMedCrossRefGoogle Scholar
  31. 31.
    Mesulam M–M, Mufson EJ, Wainer BH (1986) Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res 367:301–308PubMedCrossRefGoogle Scholar
  32. 32.
    Miller RJ (1991) The control of neuronal Ca2 + homeostasis. Prog Neurobiol 37:255–285PubMedCrossRefGoogle Scholar
  33. 33.
    Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  34. 34.
    Morris JC, Heyman A, Mohs RC et al (1989) CERAD Investigators. The Consortium to establish a Registry for Alzheimer’s Disease. Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165PubMedGoogle Scholar
  35. 35.
    Mufson EJ, Ma SY, Cochran EJ et al (2000) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 427:19–30PubMedCrossRefGoogle Scholar
  36. 36.
    Perry EK, Irving D, Kerwin JM et al (1993) Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord 7(2):69–79PubMedCrossRefGoogle Scholar
  37. 37.
    Rintoul GL, Raymond LA, Baimbridge KG (2001) Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. Cell Calcium 29:277–287PubMedCrossRefGoogle Scholar
  38. 38.
    Samuel WA, Henderson VW, Miller CA (1991) Severity of dementia in Alzheimer disease and neurofibrillary tangles in multiple brain regions. Alzhemier Dis Assoc Disor 5:1–11CrossRefGoogle Scholar
  39. 39.
    Scharfman HE, Schwartzkroin PA (1989) Protection of dentate hilar cells from prolonged stimulation by intracellular calcium chelation. Science 246:249–262CrossRefGoogle Scholar
  40. 40.
    Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res (in press)Google Scholar
  41. 41.
    Stoehr JD, Mobley SL, Roice D et al (1997) The effects of selective cholinergic basal forebrain lesions and aging upon expectancy in the rat. Neurobiol Lear Mem 67:214–227CrossRefGoogle Scholar
  42. 42.
    Wagner U, Utton M, Gallo JM, Miller CC (1996) Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci 109:1537–1543PubMedGoogle Scholar
  43. 43.
    Wu CK, Nagykery N, Hersh LB, Scinto LF, Geula C (2003) Selective age-related loss of calbindin-D28k from basal forebrain cholinergic neurons in the common marmoset (Callithrix jacchus). Neuroscience 120:249–259PubMedCrossRefGoogle Scholar
  44. 44.
    Wu C-K, Hersh LB, Geula C (2000) Cyto- and chemoarchitecture of basal forebrain cholinergic neurons in the common marmoset (Callithirx jacchus). Exp Neurol 165:306–326PubMedCrossRefGoogle Scholar
  45. 45.
    Wu C-K, Mesulam M–M, Geula C (1997) Age-related loss of calbindin from human basal forebrain cholinergic neurons. Neuroreport 8:2209–2213PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David Riascos
    • 1
  • Dianne de Leon
    • 1
  • Alaina Baker-Nigh
    • 1
  • Alexander Nicholas
    • 2
  • Rustam Yukhananov
    • 3
  • Jing Bu
    • 2
    • 5
  • Chuang-Kuo Wu
    • 4
  • Changiz Geula
    • 1
  1. 1.Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer’s Disease CenterNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of Medicine, Harvard Medical School and Division of GerontologyBeth Israel Deaconess Medical CenterBostonUSA
  3. 3.Precision BiosystemsMansfieldUSA
  4. 4.Department of NeurologyTexas Tech University HSC School of MedicineLubbockUSA
  5. 5.Berkshire Medical CenterPittsfieldUSA

Personalised recommendations