Acta Neuropathologica

, 122:591 | Cite as

Transportin1: a marker of FTLD-FUS

  • Jack Brelstaff
  • Tammaryn Lashley
  • Janice L. Holton
  • Andrew J. Lees
  • Martin N. Rossor
  • Rina Bandopadhyay
  • Tamas Revesz
Original Paper


The term frontotemporal lobar degeneration (FTLD) describes a group of disorders that are subdivided by the presence of one of a number of pathological proteins identified in the inclusion bodies observed post-mortem. The FUS variant is defined by the presence of the fused in sarcoma protein (FUS) in the pathological inclusions. However, similar to other FTLDs, the disease pathogenesis of FTLD-FUS remains largely poorly understood. Here we present data that the protein transportin1 (TRN1) is abundant in the FUS-positive inclusions. TRN1, the protein product of the TNP01 gene, is responsible for shuttling proteins containing an M9 nuclear localisation signal between the nuclear and cytoplasmic compartments. RNA interacting proteins, including FUS, have been implicated as targets of TRN1. Using TRN1 immunohistochemistry and Western blotting in this study, we investigated 13 cases of FTLD-FUS including 6 cases with neuronal intermediate filament inclusion disease (NIFID) and 7 atypical frontotemporal lobar degeneration with ubiquitinated inclusion (aFTLD-U) cases. The data from our immunohistochemical studies show that FUS-immunoreactive inclusions are also strongly labelled with the anti-TRN1 antibody and double-label immunofluorescence studies indicate good co-localisation between the FUS and TRN1 pathologies. Our biochemical investigations demonstrate that urea-soluble TRN1 is present in aFTLD-U and NIFID, but not in normal control brains. These findings implicate abnormalities of FUS transport in the pathogenesis of FTLD-FUS.


Fused in sarcoma FUS Transportin1 TRN1 TNP01 Biochemistry FTLD Frontotemporal dementia Frontotemporal lobar degeneration 


  1. 1.
    Aman P, Panagopoulos I, Lassen C, Fioretos T, Mencinger M, Toresson H, Hoglund M, Forster A, Rabbitts TH, Ron D, Mandahl N, Mitelman F (1996) Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 37:1–8PubMedCrossRefGoogle Scholar
  2. 2.
    Andersson MK, Stahlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, Nilsson O, Aman P (2008) The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 9:37PubMedCrossRefGoogle Scholar
  3. 3.
    Bonifaci N, Moroianu J, Radu A, Blobel G (1997) Karyopherin beta2 mediates nuclear import of a mRNA binding protein. Proc Natl Acad Sci USA 94:5055–5060PubMedCrossRefGoogle Scholar
  4. 4.
    Crozat A, Aman P, Mandahl N, Ron D (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363:640–644PubMedCrossRefGoogle Scholar
  5. 5.
    Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B, Neumann M, Haass C (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29:2841–2857PubMedCrossRefGoogle Scholar
  6. 6.
    Fujii R, Okabe S, Urushido T, Inoue K, Yoshimura A, Tachibana T, Nishikawa T, Hicks GG, Takumi T (2005) The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol 15:587–593PubMedCrossRefGoogle Scholar
  7. 7.
    Fujii R, Takumi T (2005) TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 118:5755–5765PubMedCrossRefGoogle Scholar
  8. 8.
    Josephs KA, Holton JL, Rossor MN, Braendgaard H, Ozawa T, Fox NC, Petersen RC, Pearl GS, Ganguly M, Rosa P, Laursen H, Parisi JE, Waldemar G, Quinn NP, Dickson DW, Revesz T (2003) Neurofilament inclusion body disease: a new proteinopathy? Brain 126:2291–2303PubMedCrossRefGoogle Scholar
  9. 9.
    Klint P, Hellman U, Wernstedt C, Aman P, Ron D, Claesson-Welsh L (2004) Translocated in liposarcoma (TLS) is a substrate for fibroblast growth factor receptor-1. Cell Signal 16:515–520PubMedCrossRefGoogle Scholar
  10. 10.
    Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, Kenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208PubMedCrossRefGoogle Scholar
  11. 11.
    Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRefGoogle Scholar
  12. 12.
    Lashley T, Rohrer JD, Bandopadhyay R, Fry C, Ahmed Z, Isaacs AM, Brelstaff JH, Borroni B, Warren JD, Troakes C, King A, Al-Sarraj S, Newcombe J, Quinn N, Ostergaard, SchrØder, Bojsen-MØller M, Braendgaard H, Fox N, Rossor M, Lees AJ, Holton JL, Revesz T (2011) A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies. Brian. doi:10.1093/brain/awr160 (in press)
  13. 13.
    Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM (2006) Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126:543–558PubMedCrossRefGoogle Scholar
  14. 14.
    Lee HG, Ueda M, Miyamoto Y, Yoneda Y, Perry G, Smith MA, Zhu X (2006) Aberrant localization of importin alpha1 in hippocampal neurons in Alzheimer disease. Brain Res 1124:1–4PubMedCrossRefGoogle Scholar
  15. 15.
    Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594PubMedCrossRefGoogle Scholar
  16. 16.
    Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE, Ince PG, Kamphorst W, Revesz T, Rozemuller AJ, Kumar-Singh S, Akiyama H, Baborie A, Spina S, Dickson DW, Trojanowski JQ, Mann DM (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  17. 17.
    Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE, Ince PG, Kamphorst W, Revesz T, Rozemuller AJ, Kumar-Singh S, Akiyama H, Baborie A, Spina S, Dickson DW, Trojanowski JQ, Mann DM (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18PubMedCrossRefGoogle Scholar
  18. 18.
    Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007PubMedCrossRefGoogle Scholar
  19. 19.
    Munoz DG, Neumann M, Kusaka H, Yokota O, Ishihara K, Terada S, Kuroda S, Mackenzie IR (2009) FUS pathology in basophilic inclusion body disease. Acta Neuropathol 118:617–627PubMedCrossRefGoogle Scholar
  20. 20.
    Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922–2931PubMedCrossRefGoogle Scholar
  21. 21.
    Neumann M, Roeber S, Kretzschmar HA, Rademakers R, Baker M, Mackenzie IR (2009) Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118:605–616PubMedCrossRefGoogle Scholar
  22. 22.
    Prasad DD, Ouchida M, Lee L, Rao VN, Reddy ES (1994) TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene 9:3717–3729PubMedGoogle Scholar
  23. 23.
    Rappsilber J, Friesen WJ, Paushkin S, Dreyfuss G, Mann M (2003) Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal Chem 75:3107–3114PubMedCrossRefGoogle Scholar
  24. 24.
    Rebane A, Aab A, Steitz JA (2004) Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 10:590–599PubMedCrossRefGoogle Scholar
  25. 25.
    Roeber S, Mackenzie IR, Kretzschmar HA, Neumann M (2008) TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol 116:147–157PubMedCrossRefGoogle Scholar
  26. 26.
    Tan AY, Manley JL (2009) The TET family of proteins: functions and roles in disease. J Mol Cell Biol 1:82–92PubMedCrossRefGoogle Scholar
  27. 27.
    Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211PubMedCrossRefGoogle Scholar
  28. 28.
    Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14:479–485PubMedCrossRefGoogle Scholar
  29. 29.
    Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451PubMedCrossRefGoogle Scholar
  30. 30.
    Xu L, Massague J (2004) Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 5:209–219PubMedCrossRefGoogle Scholar
  31. 31.
    Yang S, Warraich ST, Nicholson GA, Blair IP (2010) Fused in sarcoma/translocated in liposarcoma: a multifunctional DNA/RNA binding protein. Int J Biochem Cell Biol 42:1408–1411PubMedCrossRefGoogle Scholar
  32. 32.
    Zinszner H, Sok J, Immanuel D, Yin Y, Ron D (1997) TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci 110:1741–1750PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jack Brelstaff
    • 1
  • Tammaryn Lashley
    • 1
  • Janice L. Holton
    • 1
    • 2
  • Andrew J. Lees
    • 1
    • 2
  • Martin N. Rossor
    • 3
  • Rina Bandopadhyay
    • 2
  • Tamas Revesz
    • 1
  1. 1.Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of NeurologyUniversity College LondonLondonUK
  2. 2.Reta Lila Weston Institute, UCL Institute of NeurologyLondonUK
  3. 3.Dementia Research Centre, UCL Institute of NeurologyLondonUK

Personalised recommendations