Acta Neuropathologica

, 122:401 | Cite as

Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI

  • Jon B. Toledo
  • Hugo Vanderstichele
  • Michal Figurski
  • Paul S. Aisen
  • Ronald C. Petersen
  • Michael W. Weiner
  • Clifford R. JackJr
  • William Jagust
  • Charles Decarli
  • Arthur W. Toga
  • Estefanía Toledo
  • Sharon X. Xie
  • Virginia M.-Y. Lee
  • John Q. Trojanowski
  • Leslie M. Shaw
Original Paper

Abstract

Previous studies of Aβ plasma as a biomarker for Alzheimer’s disease (AD) obtained conflicting results. We here included 715 subjects with baseline Aβ1-40 and Aβ1-42 plasma measurement (50% with 4 serial annual measurements): 205 cognitively normal controls (CN), 348 patients mild cognitive impairment (MCI) and 162 with AD. We assessed the factors that modified their concentrations and correlated these values with PIB PET, MRI and tau and Aβ1-42 measures in cerebrospinal fluid (CSF). Association between Aβ and diagnosis (baseline and prospective) was assessed. A number of health conditions were associated with altered concentrations of plasma Aβ. The effect of age differed according to AD stage. Plasma Aβ1-42 showed mild correlation with other biomarkers of Aβ pathology and were associated with infarctions in MRI. Longitudinal measurements of Aβ1-40 and Aβ1-42 plasma levels showed modest value as a prognostic factor for clinical progression. Our longitudinal study of complementary measures of Aβ pathology (PIB, CSF and plasma Aβ) and other biomarkers in a cohort with an extensive neuropsychological battery is significant because it shows that plasma Aβ measurements have limited value for disease classification and modest value as prognostic factors over the 3-year follow-up. However, with longer follow-up, within subject plasma Aβ measurements could be used as a simple and minimally invasive screen to identify those at increased risk for AD. Our study emphasizes the need for a better understanding of the biology and dynamics of plasma Aβ as well as the need for longer term studies to determine the clinical utility of measuring plasma Aβ.

Keywords

Biomarker Alzheimer disease Amyloid beta-peptides Prognosis Diagnosis PET Cerebrospinal fluid 

Supplementary material

401_2011_861_MOESM1_ESM.doc (226 kb)
Supplementary material 1 (DOC 225 kb)

References

  1. 1.
    (1998) Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer’s Disease”. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiology of aging 19(2): 109–116Google Scholar
  2. 2.
    Alexander G, Furey M, Grady C et al (1997) Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 154(2):165–172PubMedGoogle Scholar
  3. 3.
    Arvanitakis Z, Lucas JA, Younkin LH, Younkin SG, Graff-Radford NR (2002) Serum creatinine levels correlate with plasma amyloid [beta] protein. Alzheimer Dis Assoc Disord 16(3):187–190PubMedCrossRefGoogle Scholar
  4. 4.
    Blasko I, Kemmler G, Krampla W et al (2005) Plasma amyloid [beta] protein 42 in non-demented persons aged 75 years: effects of concomitant medication and medial temporal lobe atrophy. Neurobiol Aging 26(8):1135–1143PubMedCrossRefGoogle Scholar
  5. 5.
    Blennow K, De Meyer G, Hansson O et al (2009) Evolution of Abeta42 and Abeta40 levels and Abeta42/Abeta40 ratio in plasma during progression of Alzheimer’s disease: a multicenter assessment. J Nutr Health Aging 13(3):205–208PubMedCrossRefGoogle Scholar
  6. 6.
    Butters N, Granholm E, Salmon D, Grant I, Wolfe J (1987) Episodic and semantic memory: a comparison of amnesic and demented patients. J Clin Exp Neuropsychol 9(5):479–497PubMedCrossRefGoogle Scholar
  7. 7.
    Carmichael O, Schwarz C, Drucker D et al (2010) Longitudinal changes in white matter disease and cognition in the first year of the alzheimer disease neuroimaging initiative. Arch Neurol 67(11):1370–1378PubMedCrossRefGoogle Scholar
  8. 8.
    Cosentino SA, Stern Y, Sokolov E et al (2010) Plasma {beta}-amyloid and cognitive decline. Arch Neurol 67(12):1485–1490PubMedCrossRefGoogle Scholar
  9. 9.
    Chen M, Inestrosa NC, Ross GS, Fernandez HL (1995) Platelets are the primary source of amyloid [beta]-peptide in human blood. Biochem Biophys Res Commun 213(1):96–103PubMedCrossRefGoogle Scholar
  10. 10.
    Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN and Trojanowski JQ (2010) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol agingGoogle Scholar
  11. 11.
    de Souza LC, Lamari F, Belliard S et al (2011) Cerebrospinal fluid biomarkers in the differential diagnosis of Alzheimer’s disease from other cortical dementias. J Neurol Neurosurg Psychiatry 82(3):240–246PubMedCrossRefGoogle Scholar
  12. 12.
    Devanand DP, Schupf N, Stern Y et al (2011) Plasma Aβ and PET PiB binding are inversely related in mild cognitive impairment. NeurologyGoogle Scholar
  13. 13.
    Fagan AM, Mintun MA, Shah AR et al (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1(8–9):371–380PubMedCrossRefGoogle Scholar
  14. 14.
    Fagan AM, Shaw LM, Xiong C et al (2011) Comparison of Analytical Platforms for Cerebrospinal Fluid Measures of {beta}-Amyloid 1-42, Total tau, and P-tau181 for Identifying Alzheimer Disease Amyloid Plaque Pathology. Arch NeurolGoogle Scholar
  15. 15.
    Fei M, Jianghua W, Rujuan M, Wei Z, Qian W (2011) The relationship of plasma A[beta] levels to dementia in aging individuals with mild cognitive impairment. J Neurol Sci 305(1–2):92–96PubMedCrossRefGoogle Scholar
  16. 16.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198PubMedCrossRefGoogle Scholar
  17. 17.
    Fukumoto H, Tennis M, Locascio JJ et al (2003) Age but not diagnosis is the main predictor of plasma amyloid {beta}-protein levels. Arch Neurol 60(7):958–964PubMedCrossRefGoogle Scholar
  18. 18.
    Goldberg KM, Iglewicz B (1992) Bivariate extensions of the boxplot. Technometrics 34:307–320CrossRefGoogle Scholar
  19. 19.
    Goodglass H, Kaplan E (1983) The assessment of aphasia and related disorders. Lea & Febiger, PhiladelphiaGoogle Scholar
  20. 20.
    Graff-Radford NR, Crook JE, Lucas J et al (2007) Association of low plasma Abeta42/Abeta40 Ratios with increased imminent risk for mild cognitive impairment and alzheimer disease. Arch Neurol 64(3):354–362PubMedCrossRefGoogle Scholar
  21. 21.
    Gurol ME, Irizarry MC, Smith EE et al (2006) Plasma β-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy. Neurology 66(1):23–29PubMedCrossRefGoogle Scholar
  22. 22.
    Ikonomovic MD, Klunk WE, Abrahamson EE et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(6):1630–1645PubMedCrossRefGoogle Scholar
  23. 23.
    Jack CR Jr, Bernstein MA, Fox NC et al (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691PubMedCrossRefGoogle Scholar
  24. 24.
    Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128PubMedCrossRefGoogle Scholar
  25. 25.
    Jagust WJ, Bandy D, Chen K et al (2010) The Alzheimer’s disease neuroimaging Initiative positron emission tomography core. Alzheimers Dement 6(3):221–229PubMedCrossRefGoogle Scholar
  26. 26.
    Kaplan E, Goodglass H, Weintraub S (1983) Boston naming test. Lea & Febiger, PhiladelphiaGoogle Scholar
  27. 27.
    Lachno DR, Vanderstichele H, De Groote G et al (2009) The influence of matrix type, diurnal rhythm and sample collection and processing on the measurement of plasma beta-amyloid isoforms using the INNO-BIA plasma Abeta forms multiplex assay. J Nutr Health Aging 13(3):220–225PubMedCrossRefGoogle Scholar
  28. 28.
    Lambert J-C, Schraen-Maschke S, Richard F et al (2009) Association of plasma amyloid β with risk of dementia. Neurology 73(11):847–853PubMedCrossRefGoogle Scholar
  29. 29.
    Lambert JC, Dallongeville J, Ellis KA et al (2011) Association of plasma aβ peptides with blood pressure in the elderly. PLoS ONE 6(4):e18536PubMedCrossRefGoogle Scholar
  30. 30.
    Laske C, Sopova K, Gkotsis C et al (2010) Amyloid-β peptides in plasma and cognitive decline after 1 year follow-up in alzheimer’s disease patients. J Alzheimers Dis 21(4):1263–1269PubMedGoogle Scholar
  31. 31.
    Lewczuk P, Kornhuber J, Vanmechelen E et al (2010) Amyloid beta peptides in plasma in early diagnosis of Alzheimer’s disease: a multicenter study with multiplexing. Exp Neurol 223(2):366–370PubMedCrossRefGoogle Scholar
  32. 32.
    Locascio JJ, Fukumoto H, Yap L et al (2008) Plasma amyloid {beta}-protein and c-reactive protein in relation to the rate of progression of Alzheimer disease. Arch Neurol 65(6):776–785PubMedCrossRefGoogle Scholar
  33. 33.
    Lopez OL, Kuller LH, Mehta PD et al (2008) Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology 70(19):1664–1671PubMedCrossRefGoogle Scholar
  34. 34.
    Lui JK, Laws SM, Li Q-X et al (2010) Plasma amyloid-β as a biomarker in Alzheimer’s disease: the AIBL study of aging. J Alzheimers Dis 20(4):1233–1242PubMedGoogle Scholar
  35. 35.
    Mathis CA, Wang Y, Holt DP et al (2003) Synthesis and Evaluation of 11C-Labeled 6-Substituted 2-Arylbenzothiazoles as Amyloid Imaging Agents. J Med Chem 46(13):2740–2754PubMedCrossRefGoogle Scholar
  36. 36.
    Mayeux R, Tang M-X, Jacobs DM et al (1999) Plasma amyloid β-peptide 1-42 and incipient Alzheimer’s disease. Ann Neurol 46(3):412–416PubMedCrossRefGoogle Scholar
  37. 37.
    Mayeux R, Honig LS, Tang M-X et al (2003) Plasma Aβ40 and Aβ42 and Alzheimer’s disease: relation to age, mortality, and risk. Neurology 61(9):1185–1190PubMedGoogle Scholar
  38. 38.
    Mehta PD, Pirttila T, Patrick BA, Barshatzky M, Mehta SP (2001) Amyloid [beta] protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci Lett 304(1–2):102–106PubMedCrossRefGoogle Scholar
  39. 39.
    Petersen RC, Aisen PS, Beckett LA et al (2010) Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3):201–209PubMedCrossRefGoogle Scholar
  40. 40.
    R Development Core Team (2010) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  41. 41.
    Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276Google Scholar
  42. 42.
    Rentz DM, Locascio JJ, Becker JA et al (2010) Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 67(3):353–364PubMedCrossRefGoogle Scholar
  43. 43.
    Rey A (1964) L’examen clinique en psychologie. Presses Universitaires de France, ParisGoogle Scholar
  44. 44.
    Rosen W, Mohs R, Davis K (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141(11):1356–1364PubMedGoogle Scholar
  45. 45.
    Ryan JR, Paolo AM (1992) A screening procedure for estimating premorbid intelligence in the elderly. Clin Neuropsychol 6(1):53–62CrossRefGoogle Scholar
  46. 46.
    Schupf N, Tang MX, Fukuyama H et al (2008) Peripheral Aβ subspecies as risk biomarkers of Alzheimer’s disease. Proc Nat Acad Sci 105(37):14052–14057PubMedCrossRefGoogle Scholar
  47. 47.
    Schupf N, Zigman WB, Tang M-X et al (2010) Change in plasma Aβ peptides and onset of dementia in adults with Down syndrome. Neurology 75(18):1639–1644PubMedCrossRefGoogle Scholar
  48. 48.
    Seppälä TT, Herukka S-K, Hänninen T et al (2010) Plasma Aβ42 and Aβ40 as markers of cognitive change in follow-up: a prospective, longitudinal, population-based cohort study. J Neurol Neurosurg Psychiatry 81(10):1123–1127PubMedCrossRefGoogle Scholar
  49. 49.
    Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413PubMedCrossRefGoogle Scholar
  50. 50.
    Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2011) Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathol 121(5):597–609PubMedCrossRefGoogle Scholar
  51. 51.
    Song F, Poljak A, Valenzuela M, et al (2011) Meta-Analysis of Plasma Amyloid-beta levels in Alzheimer’s Disease. J Alzheimers Dis (1875-8908 (Electronic))Google Scholar
  52. 52.
    Sundelof J, Giedraitis V, Irizarry MC et al (2008) Plasma beta amyloid and the risk of alzheimer disease and dementia in elderly men: a prospective, population-based cohort study. Arch Neurol 65(2):256–263PubMedCrossRefGoogle Scholar
  53. 53.
    Taylor K, Salmon D, Rice V et al (1996) Longitudinal examination of american national adult reading test (AMNART) performance in dementia of the Alzheimer type (DAT): validation and correction based on degree of cognitive decline. J Clin Exp Neuropsychol 18(6):883–891PubMedCrossRefGoogle Scholar
  54. 54.
    Van Dijk EJ, Prins ND, Vermeer SE et al (2004) Plasma amyloid β, apolipoprotein E, lacunar infarcts, and white matter lesions. Ann Neurol 55(4):570–575PubMedCrossRefGoogle Scholar
  55. 55.
    van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM (2006) Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 5(8):655–660PubMedCrossRefGoogle Scholar
  56. 56.
    Wechsler D (1987) Wechsler Memory Scale. Rev ed. Psychological Corp, San AntonioGoogle Scholar
  57. 57.
    Weigand SD, Vemuri P, Wiste HJ et al (2011) Transforming cerebrospinal fluid Abeta42 measures into calculated Pittsburgh compound B units of brain Abeta amyloid. Alzheimers Dement 7(2):133–141PubMedCrossRefGoogle Scholar
  58. 58.
    Wilcox RR, Schönbrodt FD (2009) The WRS package for robust statistics in R (version 0.12.1). http://r-forge.r-project.org/projects/wrs/
  59. 59.
    Yaffe K, Weston A, Graff-Radford NR et al (2011) Association of plasma β-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA 305(3):261–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jon B. Toledo
    • 1
  • Hugo Vanderstichele
    • 2
  • Michal Figurski
    • 1
  • Paul S. Aisen
    • 3
  • Ronald C. Petersen
    • 4
  • Michael W. Weiner
    • 5
  • Clifford R. JackJr
    • 6
  • William Jagust
    • 7
  • Charles Decarli
    • 8
  • Arthur W. Toga
    • 9
  • Estefanía Toledo
    • 10
  • Sharon X. Xie
    • 11
  • Virginia M.-Y. Lee
    • 1
  • John Q. Trojanowski
    • 1
  • Leslie M. Shaw
    • 1
  1. 1.Department of Pathology and Laboratory Medicine, Institute on Aging, Center for Neurodegenerative Disease ResearchUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Department of Diagnostic DevelopmentInnogenetics NVGhentBelgium
  3. 3.University of California at San DiegoSan DiegoUSA
  4. 4.Mayo Clinic College of MedicineRochesterUSA
  5. 5.Department of Radiology Medicine and PsychiatryUniversity of California at San FranciscoSan FranciscoUSA
  6. 6.Mayo ClinicRochesterUSA
  7. 7.Helen Wills Neuroscience Institute University of CaliforniaBerkeleyUSA
  8. 8.Department of NeurologyUniversity of CaliforniaSacramentoUSA
  9. 9.Laboratory of Neuro Imaging, Department of NeurologyUniversity of California at Los Angeles School of MedicineLos AngelesUSA
  10. 10.Department of Preventive Medicine and Public Health, Medical School, Clinica Universidad de NavarraUniversity of NavarraPamplonaSpain
  11. 11.Department of Biostatistics and EpidemiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations