Acta Neuropathologica

, Volume 122, Issue 2, pp 171–185 | Cite as

Heterogeneity in age-related white matter changes

  • Reinhold Schmidt
  • Helena Schmidt
  • Johannes Haybaeck
  • Marisa Loitfelder
  • Serge Weis
  • Margherita Cavalieri
  • Stephan Seiler
  • Christian Enzinger
  • Stefan Ropele
  • Timo Erkinjuntti
  • Leonardo Pantoni
  • Philip Scheltens
  • Franz Fazekas
  • Kurt Jellinger
Review

Abstract

White matter changes occur endemically in routine magnetic resonance imaging (MRI) scans of elderly persons. MRI appearance and histopathological correlates of white matter changes are heterogeneous. Smooth periventricular hyperintensities, including caps around the ventricular horns, periventricular lining and halos are likely to be of non-vascular origin. They relate to a disruption of the ependymal lining with subependymal widening of the extracellular space and have to be differentiated from subcortical and deep white matter abnormalities. For the latter a distinction needs to be made between punctate, early confluent and confluent types. Although punctate white matter lesions often represent widened perivascular spaces without substantial ischemic tissue damage, early confluent and confluent lesions correspond to incomplete ischemic destruction. Punctate abnormalities on MRI show a low tendency for progression, while early confluent and confluent changes progress rapidly. The causative and modifying pathways involved in the occurrence of sporadic age-related white matter changes are still incompletely understood, but recent microarray and genome-wide association approaches increased the notion of pathways that might be considered as targets for therapeutic intervention. The majority of differentially regulated transcripts in white matter lesions encode genes associated with immune function, cell cycle, proteolysis, and ion transport. Genome-wide association studies identified six SNPs mapping to a locus on chromosome 17q25 to be related to white matter lesion load in the general population. We also report first and preliminary data that demonstrate apolipoprotein E (ApoE) immunoreactivity in white matter lesions and support epidemiological findings indicating that ApoE is another factor possibly related to white matter lesion occurrence. Further insights come from modern MRI techniques, such as diffusion tensor and magnetization transfer imaging, as they provide tools for the characterization of normal-appearing brain tissue beyond what can be expected from standard MRI scans. There is a need for additional pre- and postmortem studies in humans, including these new imaging techniques.

Keywords

White matter lesions Leukoaraiosis White matter change MRI 

References

  1. 1.
    Atwood LD, Wolf PA, Heard-Costa NL et al (2004) Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke 35:1609–1613PubMedCrossRefGoogle Scholar
  2. 2.
    Auriel E, Bornstein NM, Berenyi E et al (2011) Clinical, radiological and pathological correlates of leukoaraiosis. Acta Neurol Scand 123:41–47PubMedCrossRefGoogle Scholar
  3. 3.
    Awad I, Johnson P, Spetzler R, Hodak J (1986) Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Postmortem pathological correlations. Stroke 17:1090–1097PubMedCrossRefGoogle Scholar
  4. 4.
    Baezner H, Blahak C, Poggesi et al (2008) Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 70:935–942Google Scholar
  5. 5.
    Barber R, Scheltens P, Gholkar A et al (1999) White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. J Neurol Neurosurg Psychiatry 67:66–72PubMedCrossRefGoogle Scholar
  6. 6.
    Basile AM, Pantoni L, Pracucci G et al (2006) Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes. The LADIS (Leukoaraiosis and Disability in the Elderly) Study. Cerebrovasc Dis 21:315–322PubMedCrossRefGoogle Scholar
  7. 7.
    Bastin ME, Clayden JD, Pattie A, Gerrish IF, Wardlaw JM, Deary IJ (2009) Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age. Neurobiol Aging 30:125–136PubMedCrossRefGoogle Scholar
  8. 8.
    Benedetti B, Charil A, Rovaris M et al (2006) Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 66:535–539PubMedCrossRefGoogle Scholar
  9. 9.
    Bhadelia RA, Price LL, Tedesco KL et al (2009) Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly. Stroke 40:3816–3820PubMedCrossRefGoogle Scholar
  10. 10.
    Braffman B, Zimmerman R, Trojanowski J, Gonatas N, Hickey W, Schlaepfer W (1988) Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow–Robin spaces. AJNR Am J Neuroradiol 151:551–558Google Scholar
  11. 11.
    Bronge L, Bogdanovic N, Wahlund LO (2002) Postmortem MRI and histopathology of white matter changes in Alzheimer brains. A quantitative, comparative study. Dement Geriatr Cogn Disord 13:205–212PubMedCrossRefGoogle Scholar
  12. 12.
    Carmelli D, DeCarli C, Swan GE et al (1998) Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 29:1177–1181PubMedCrossRefGoogle Scholar
  13. 13.
    Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) CADASIL. Lancet Neurol 8:643–653PubMedCrossRefGoogle Scholar
  14. 14.
    Chabriat H, Pappata S, Poupon C et al (1999) Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke 30:2637–2643PubMedCrossRefGoogle Scholar
  15. 15.
    Chimowitz MI, Estes ML, Furlan AJ, Awad IA (1992) Further observations on the pathology of subcortical lesions identified on magnetic resonance imaging. Arch Neurol 49:747–752PubMedGoogle Scholar
  16. 16.
    Desmond DW (2002) Cognition and white matter lesions. Cerebrovasc Dis 13(Suppl 2):53–57PubMedCrossRefGoogle Scholar
  17. 17.
    Erkinjuntti T, Benavente O, Eliasziw M et al (1996) Diffuse vacuolization (spongiosis) and arteriolosclerosis in the frontal white matter occurs in vascular dementia. Arch Neurol 53:325–332PubMedGoogle Scholar
  18. 18.
    Fazekas F, Chawluk J, Alavi H, Hurtig H, Zimmerman R (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJNR Am J Neuroradiol 8:421–426Google Scholar
  19. 19.
    Fazekas F, Kapeller P, Schmidt R, Offenbacher H, Payer F, Fazekas G (1996) The relation of cerebral magnetic resonance signal hyperintensities to Alzheimer’s disease. J Neurol Sci 142:121–125PubMedCrossRefGoogle Scholar
  20. 20.
    Fazekas F, Kleinert R, Offenbacher H et al (1991) The morphologic correlate of incidental punctate MR white matter hyperintensities. AJNR Am J Neuroradiol 12:915–921PubMedGoogle Scholar
  21. 21.
    Fazekas F, Kleinert R, Offenbacher H et al (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43:1683–1689PubMedGoogle Scholar
  22. 22.
    Fazekas F, Ropele S, Enzinger C (2005) MTI of white matter hyperintensities. Brain 128:2926–2932PubMedCrossRefGoogle Scholar
  23. 23.
    Fernando MS, O’Brien JT, Perry RH et al (2004) Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol Appl Neurobiol 30:385–395PubMedCrossRefGoogle Scholar
  24. 24.
    Fernando MS, Simpson JE, Matthews F et al (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37:1391–1398PubMedCrossRefGoogle Scholar
  25. 25.
    Fornage M, Debette S, Bis JC et al (2011) Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol 69:928–939Google Scholar
  26. 26.
    Gebril OH, Kirby J, Savva G, Brayne C, Ince PG et al (2011) HFE H63D, C282Y and AGTR1 A1166C polymorphisms and brain white matter lesions in the aging brain. J Neurogenet. doi:10.3109/01677063.2011.556206
  27. 27.
    Godin O, Tzourio C, Maillard P, Alperovitch A, Mazoyer B, Dufouil C (2009) Apolipoprotein E genotype is related to progression of white matter lesion load. Stroke 40:3186–3190PubMedCrossRefGoogle Scholar
  28. 28.
    Gouw AA, Seewann A, van der Flier WM et al (2011) Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 82:126–135PubMedCrossRefGoogle Scholar
  29. 29.
    Gouw AA, Seewann A, Vrenken H et al (2008) Heterogeneity of white matter hyperintensities in Alzheimer’s disease: post-mortem quantitative MRI and neuropathology. Brain 131:3286–3298PubMedCrossRefGoogle Scholar
  30. 30.
    Grafton ST, Sumi SM, Stimac GK, Alvord EC Jr, Shaw CM, Nochlin D (1991) Comparison of postmortem magnetic resonance imaging and neuropathologic findings in the cerebral white matter. Arch Neurol 48:293–298PubMedGoogle Scholar
  31. 31.
    Graham SJ, Henkelman RM (1997) Understanding pulsed magnetization transfer. J Magn Reson Imaging 7:903–912PubMedCrossRefGoogle Scholar
  32. 32.
    Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24:109–117PubMedCrossRefGoogle Scholar
  33. 33.
    Hachinski VC, Potter P, Merskey H (1987) Leuko-araiosis. Arch Neurol 44:21–23PubMedGoogle Scholar
  34. 34.
    Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64PubMedCrossRefGoogle Scholar
  35. 35.
    Hennerici M, Baezner H, Daffertshofer M (2000) White matter changes: symptoms and signs. In: Pantoni L, Inzitari D, Wallin A (eds) The matter of white matter. Academic Pharmaceutical Productions, Utrecht, pp 55–80Google Scholar
  36. 36.
    Holland PR, Bastin ME, Jansen MA et al. (2010) MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiol Aging doi:10.1016/j.neurobiolaging.2010.11.009
  37. 37.
    Inzitari D, Pracucci G, Poggesi A et al (2009) Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339:b2477PubMedCrossRefGoogle Scholar
  38. 38.
    Jokinen H, Kaska H, Mäntylä R et al (2005) White matter hyperintensities as a predictor of neuropsychological deficits post-stroke. J Neurol Neurosurg Psychiatry 76:1229–1233PubMedCrossRefGoogle Scholar
  39. 39.
    Jokinen H, Kalska H, Mäntylä R et al (2006) Cognitive profile of subcortical vascular disease. J Neurol Neurosurg Psychiatry 77:28–33PubMedCrossRefGoogle Scholar
  40. 40.
    Jokinen H, Kalska H, Ylikoski R et al (2009) MRI-defined subcortical ischemic vascular disease: baseline clinical and neuropsychological findings. The LADIS study. Cerebrovasc Dis 27:336–344PubMedCrossRefGoogle Scholar
  41. 41.
    Jokinen H, Kalska H, Ylikoski R et al (2009) Longitudinal cognitive decline in subcortical ischemic vascular disease. The LADIS Study. Cerebrovasc Dis 27:384–391PubMedCrossRefGoogle Scholar
  42. 42.
    Jouvent E, Poupon C, Gray F (2011) Intracortical infarcts in small vessel disease: a combined 7-T postmortem MRI and neuropathological case study in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 42:27–30CrossRefGoogle Scholar
  43. 43.
    Lee DY, Fletcher E, Martinez O et al (2009) Regional pattern of white matter microstructural changes in normal aging, MCI, and AD. Neurology 73:1722–1728PubMedCrossRefGoogle Scholar
  44. 44.
    Leifer D, Buonanno FS, Richardson EP (1990) Clinicopathologic correlations of cranial magnetic resonance imaging of periventricular white matter. Neurology 40:911–918PubMedGoogle Scholar
  45. 45.
    Mantyla R, Erkinjuntti T, Salonen O et al (1997) Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort. Stroke 28:1614–1623PubMedCrossRefGoogle Scholar
  46. 46.
    Marshall V, Bradley WJ, Marshall C, Bhoopat T, Rhodes R (1988) Deep white matter infarction correlation of MR imaging and histopathologic findings. Radiology 167:517–522PubMedGoogle Scholar
  47. 47.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539PubMedCrossRefGoogle Scholar
  48. 48.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641PubMedCrossRefGoogle Scholar
  49. 49.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations AJNR. Am J Neuroradiol 29:843–852PubMedCrossRefGoogle Scholar
  50. 50.
    Munoz DG, Hastak SM, Harper B, Lee D, Hachinski VC (1993) Pathologic correlates of increased signals of the centrum ovale on magnetic resonance imaging. Arch Neurol 50:492–497PubMedGoogle Scholar
  51. 51.
    Nitkunan A, Charlton RA, McIntyre DJ, Barrick TR, Howe FA, Markus HS (2008) Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease. Magn Reson Med 59:528–534PubMedCrossRefGoogle Scholar
  52. 52.
    O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS (2004) Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 75:441–447PubMedCrossRefGoogle Scholar
  53. 53.
    Pantoni L, Basile AM, Pracucci G et al (2005) Impact of age-related cerebral white matter changes on the transition to disability—the LADIS study: rationale, design and methodology. Neuroepidemiology 24:51–62PubMedCrossRefGoogle Scholar
  54. 54.
    Pantoni L, Garcia JH (1995) The significance of cerebral white matter abnormalities 100 years after Binswanger’s report: a review. Stroke 26:1293–1301PubMedCrossRefGoogle Scholar
  55. 55.
    Pfefferbaum A, Sullivan EV, Adalsteinsson E, Garrick T, Harper C (2004) Postmortem MR imaging of formalin-fixed human brain. Neuroimage 21:1585–1595PubMedCrossRefGoogle Scholar
  56. 56.
    Poggesi A, Pracucci G, Chabriat H et al (2008) Urinary complaints in nondisabled elderly people with age-related white matter changes: the Leukoaraiosis and Disability (LADIS) Study. J Am Geriatr Soc 56:1638–1643PubMedCrossRefGoogle Scholar
  57. 57.
    Pohjasvaara TI, Jokinen H, Ylikoski R et al (2007) White matter lesions are related to impaired instrumental activities of daily living poststroke. J Stroke Cerebrovasc Dis 16:251–258PubMedCrossRefGoogle Scholar
  58. 58.
    Polvikoski TM, van Straaten EC, Barkhof F et al (2010) Frontal lobe white matter hyperintensities and neurofibrillary pathology in the oldest old. Neurology 75:2071–2078PubMedCrossRefGoogle Scholar
  59. 59.
    Revesz T, Hawkins CP, du Boulay EP, Barnard RO, McDonald WI (1989) Pathological findings correlated with magnetic resonance imaging in subcortical arteriosclerotic encephalopathy (Binswanger’s disease). J Neurol Neurosurg Psychiatry 52:1337–1344PubMedCrossRefGoogle Scholar
  60. 60.
    Ropele S, Seewann A, Gouw AA et al (2009) Quantitation of brain tissue changes associated with white matter hyperintensities by diffusion-weighted and magnetization transfer imaging: the LADIS (Leukoaraiosis and Disability in the Elderly) study. J Magn Reson Imaging 29:268–274PubMedCrossRefGoogle Scholar
  61. 61.
    Rosano C, Sigurdsson S, Siggeirsdottir K et al (2010) Magnetization transfer imaging, white matter hyperintensities, brain atrophy and slower gait in older men and women. Neurobiol Aging 31:1197–1204PubMedCrossRefGoogle Scholar
  62. 62.
    Sachdev P, Wen W, Chen X, Brodaty H (2007) Progression of white matter hyperintensities in elderly individuals over 3 years. Neurology 68:214–222PubMedCrossRefGoogle Scholar
  63. 63.
    Scarpelli M, Salvolini U, Diamanti L, Montironi R, Chiaromoni L, Maricotti M (1994) MRI and pathological examination of post-mortem brains: the problem of white matter high signal areas. Neuroradiology 36:393–398PubMedCrossRefGoogle Scholar
  64. 64.
    Scheltens P, Barkhof F, Leys D, Wolters E, Ravid R, Kamphorst W (1995) Histopathological correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45:883–888PubMedGoogle Scholar
  65. 65.
    Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F (2003) Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet 361:2046–2048PubMedCrossRefGoogle Scholar
  66. 66.
    Schmidt R, Hayn M, Fazekas F, Kapeller P, Esterbauer H (1996) Magnetic resonance imaging white matter hyperintensities in clinically normal elderly individuals. Correlations with plasma concentrations of naturally occurring antioxidants. Stroke 27:2043–2047PubMedCrossRefGoogle Scholar
  67. 67.
    Schmidt R, Lechner H, Fazekas F et al (1994) Assessment of cerebrovascular risk profiles in healthy persons: definition of research goals and the Austrian Stroke Prevention study. Neuroepidemiology 13:308–313PubMedCrossRefGoogle Scholar
  68. 68.
    Schmidt R, Petrovic K, Ropele S, Enzinger C, Fazekas F (2007) Progression of leukoaraiosis and cognition. Stroke 38:2619–2625PubMedCrossRefGoogle Scholar
  69. 69.
    Schmidt R, Ropele S, Ferro J et al (2010) Diffusion-weighted imaging and cognition in the leukoaraiosis and disability in the elderly study. Stroke 41:e402–e408PubMedCrossRefGoogle Scholar
  70. 70.
    Schmierer K, Altmann DR, Kassim N et al (2004) Progressive change in primary progressive multiple sclerosis normal-appearing white matter: a serial diffusion magnetic resonance imaging study. Mult Scler 10:182–187PubMedCrossRefGoogle Scholar
  71. 71.
    Schmierer K, Scaravilli F, Altmann D, Barker G, Miller D (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56:407–415PubMedCrossRefGoogle Scholar
  72. 72.
    Schmierer K, Tozer DJ, Scaravilli F et al (2007) Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 26:41–51PubMedCrossRefGoogle Scholar
  73. 73.
    Schmierer K, Wheeler-Kingshott CA, Boulby PA et al (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35:467–477PubMedCrossRefGoogle Scholar
  74. 74.
    Shenkin SD, Bastin ME, Macgillivray TJ et al (2005) Cognitive correlates of cerebral white matter lesions and water diffusion tensor parameters in community-dwelling older people. Cerebrovasc Dis 20:310–318PubMedCrossRefGoogle Scholar
  75. 75.
    Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62:26–34PubMedCrossRefGoogle Scholar
  76. 76.
    Shereen A, Nemkul N, Yang D et al (2010) Ex vivo diffusion tensor imaging and neuropathological correlation in a murine model of hypoxia–ischemia-induced thrombotic stroke. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2010.212
  77. 77.
    Simpson JE, Fernando MS, Clark L et al (2007) White matter lesions in an unselected cohort of the elderly: astrocytic, microglial and oligodendrocyte precursor cell responses. Neuropathol Appl Neurobiol 33:410–419PubMedCrossRefGoogle Scholar
  78. 78.
    Simpson JE, Ince PG, Higham CE et al (2007) Microglial activation in white matter lesions and nonlesional white matter of ageing brains. Neuropathol Appl Neurobiol 33:670–683PubMedCrossRefGoogle Scholar
  79. 79.
    Simpson JE, Hosny O, Wharton SB et al (2009) Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways. Stroke 40:369–375PubMedCrossRefGoogle Scholar
  80. 80.
    Smith CD, Snowdon D, Markesbery WR (2000) Periventricular white matter hyperintensities on MRI: correlation with neuropathologic findings. J Neuroimaging 10:13–16PubMedGoogle Scholar
  81. 81.
    Spilt A, Geeraedts T, de Craen AJ, Westendorp RG, Blauw GJ, van Buchem MA (2005) Age-related changes in normal-appearing brain tissue and white matter hyperintensities: more of the same or something else? AJNR Am J Neuroradiol 26:725–729PubMedGoogle Scholar
  82. 82.
    Spilt A, Goekoop R, Westendorp RG, Blauw GJ, de Craen AJ, van Buchem MA (2006) Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study. AJNR Am J Neuroradiol 27:1964–1968PubMedGoogle Scholar
  83. 83.
    Sze G, de Armond S, Brant-Zawadzki M, Davis R, Norman D, Newton T (1986) Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding. AJR Am J Roentgenol 147:331–337PubMedGoogle Scholar
  84. 84.
    Tanabe JL, Ezekiel F, Jagust WJ et al (1999) Magnetization transfer ratio of white matter hyperintensities in subcortical ischemic vascular dementia. AJNR Am J Neuroradiol 20:839–844PubMedGoogle Scholar
  85. 85.
    Taylor W, MacFall J, Provenzale J et al (2003) Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. Am J Roentgenol 181:571–576Google Scholar
  86. 86.
    Teodorczuk A, O’Brien JT, Firbank MJ et al (2007) White matter changes and late-life depressive symptoms: longitudinal study. Br J Psychiatry 191:212–217PubMedCrossRefGoogle Scholar
  87. 87.
    Van der Flier W, van Straaten E, Barkhof F et al (2005) Small vessel disease and general cognitive function in non-disabled elderly: the LADIS study. Stroke 36:2116–2120PubMedCrossRefGoogle Scholar
  88. 88.
    Van Dijk E, Prins N, Vermeer S et al (2004) Plasma amyloid beta, apolipoprotein E, lacunar infarcts, and white matter lesions. Ann Neurol 55:570–575PubMedCrossRefGoogle Scholar
  89. 89.
    Van Dijk E, Prins N, Vermeer S, Koudstaal P, Breteler M (2002) Frequency of white matter lesions and silent lacunar infarcts. J Neurol Transm Suppl 25:25–39Google Scholar
  90. 90.
    Van Dijk E, Prins N, Vermeer S et al (2005) C-reactive protein and cerebral small vessel disease: the Rotterdam Scan Study. Circulation 112:900–905PubMedCrossRefGoogle Scholar
  91. 91.
    Van Swieten J, van den Hout J, van Ketel B, Hijdra A, Wokke J, van Gijn J (1991) Periventricular lesions in the white matter on magnetic resonance imaging in the elderly: a morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114:761–774PubMedCrossRefGoogle Scholar
  92. 92.
    Viana-Baptista M, Bugalho P, Jordao C et al (2008) Cognitive function correlates with frontal white matter apparent diffusion coefficients in patients with leukoaraiosis. J Neurol 255:360–366PubMedCrossRefGoogle Scholar
  93. 93.
    Wang L, Goldstein FC, Levey AI et al (2010) White matter hyperintensities and changes in white matter integrity in patients with Alzheimer’s disease. Neuroradiology. doi:10.1007/s00234-010-0806-2
  94. 94.
    Wen W, Sachdev PS, Chen X, Anstey K (2006) Gray matter reduction is correlated with white matter hyperintensity volume: a voxel-based morphometric study in a large epidemiological sample. Neuroimage 29:1031–1039PubMedCrossRefGoogle Scholar
  95. 95.
    Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71:804–811PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Reinhold Schmidt
    • 1
  • Helena Schmidt
    • 2
  • Johannes Haybaeck
    • 3
  • Marisa Loitfelder
    • 1
  • Serge Weis
    • 4
  • Margherita Cavalieri
    • 1
  • Stephan Seiler
    • 1
  • Christian Enzinger
    • 5
  • Stefan Ropele
    • 5
  • Timo Erkinjuntti
    • 6
  • Leonardo Pantoni
    • 7
  • Philip Scheltens
    • 8
  • Franz Fazekas
    • 5
  • Kurt Jellinger
    • 9
  1. 1.Division of Special Neurology, Department of NeurologyMedical University of GrazGrazAustria
  2. 2.Institute of Molecular Biology and BiochemistryMedical University of GrazGrazAustria
  3. 3.Institute of PathologyMedical University of GrazGrazAustria
  4. 4.Laboratory of Neuropathology, Department of Pathology and NeuropathologyState Neuropsychiatric Hospital Wagner-JaureggLinzAustria
  5. 5.Division of General Neurology, Department of NeurologyMedical University of GrazGrazAustria
  6. 6.Memory Research Unit, Department of NeurologyHelsinki University Central HospitalHelsinkiFinland
  7. 7.Department of Neurological and Psychiatric SciencesUniversity of FlorenceFlorenceItaly
  8. 8.Alzheimer Centre, Department of NeurologyVU University Medical CentreAmsterdamThe Netherlands
  9. 9.Institute of Clinical NeurobiologyViennaAustria

Personalised recommendations