Advertisement

Acta Neuropathologica

, Volume 122, Issue 1, pp 11–19 | Cite as

Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody

  • David Capper
  • Matthias Preusser
  • Antje Habel
  • Felix Sahm
  • Ulrike Ackermann
  • Genevieve Schindler
  • Stefan Pusch
  • Gunhild Mechtersheimer
  • Hanswalter Zentgraf
  • Andreas von Deimling
Original Paper

Abstract

Activating mutations of the serine threonine kinase v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) are frequent in benign and malignant human tumors and are emerging as an important biomarker. Over 95% of BRAF mutations are of the V600E type and specific small molecular inhibitors are currently under pre-clinical or clinical investigation. BRAF mutation status is determined by DNA-based methods, most commonly by sequencing. Here we describe the development of a monoclonal BRAF V600E mutation-specific antibody that can differentiate BRAF V600E and wild type protein in routinely processed formalin-fixed and paraffin-embedded tissue. A total of 47 intracerebral melanoma metastases and 21 primary papillary thyroid carcinomas were evaluated by direct sequencing of BRAF and by immunohistochemistry using the BRAF V600E mutation-specific antibody clone VE1. Correlation of VE1 immunohistochemistry and BRAF sequencing revealed a perfect match for both papillary thyroid carcinomas and melanoma metastases. The staining intensity in BRAF V600E mutated tumor samples ranged from weak to strong. The generally homogenous VE1 staining patterns argue against a clonal heterogeneity of the tumors investigated. Caution is essential when only poorly preserved tissue is available for VE1 immunohistochemical analysis or when tissues with only little total BRAF protein are analyzed. Immunohistochemistry using antibody VE1 may substantially facilitate molecular analysis of BRAF V600E status for diagnostic, prognostic, and predictive purposes.

Keywords

BRAF V600E Mutation Monoclonal antibody Immunohistochemistry Melanoma Papillary thyroid carcinoma Biomarker 

Notes

Acknowledgments

We would like to thank Kerstin Lindenberg and Jochen Meyer for excellent technical assistance. We thank the tissuebank of the National Center of Tumor Diseases, Heidelberg, for supplying us with tumor material. This work was supported by the Bundesministerium für Bildung und Forschung (BMBF–01ES0730 and 01GS0883). Matthias Preusser acknowledges support by a European Association of Neurooncology (EANO) Fellowship Grant.

Conflict of interest

Dr Zentgraf, Dr Capper, and Dr von Deimling have applied for a patent on the diagnostic use of BRAF V600E mutant-specific antibody VE1.

References

  1. 1.
    Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224. doi: 10.1002/path.2913
  2. 2.
    Andrulis M, Capper D, Luft T et al (2010) Detection of isocitrate dehydrogenase 1 mutation R132H in myelodysplastic syndrome by mutation-specific antibody and direct sequencing. Leuk Res 34:1091–1093PubMedCrossRefGoogle Scholar
  3. 3.
    Arcila M, Lau C, Nafa K et al (2011) Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn 13:64–73PubMedCrossRefGoogle Scholar
  4. 4.
    Arkenau HT, Kefford R, Long GV (2011) Targeting BRAF for patients with melanoma. Br J Cancer 104:392–398PubMedCrossRefGoogle Scholar
  5. 5.
    Badalian-Very G, Vergilio JA, Degar BA et al (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–1923PubMedCrossRefGoogle Scholar
  6. 6.
    Baitei EY, Zou M, Al-Mohanna F et al (2009) Aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma. J Pathol 217:707–715PubMedCrossRefGoogle Scholar
  7. 7.
    Barnier JV, Papin C, Eychene A et al (1995) The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem 270:23381–23389PubMedCrossRefGoogle Scholar
  8. 8.
    Capper D, Sahm F, Hartmann C et al (2010) Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol 34:1199–1204PubMedCrossRefGoogle Scholar
  9. 9.
    Capper D, Weissert S, Balss J et al (2010) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254PubMedCrossRefGoogle Scholar
  10. 10.
    Capper D, Zentgraf H, Balss J et al (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601PubMedCrossRefGoogle Scholar
  11. 11.
    Chan TL, Zhao W, Leung SY et al (2003) BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 63:4878–4881PubMedGoogle Scholar
  12. 12.
    Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627PubMedCrossRefGoogle Scholar
  13. 13.
    De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762PubMedCrossRefGoogle Scholar
  14. 14.
    Desestret V, Ciccarino P, Ducray F et al (2011) Prognostic stratification of gliomatosis cerebri by IDH1(R132H) and INA expression. J Neurooncol. doi: 10.1007/s11060-011-0587-4
  15. 15.
    Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712PubMedCrossRefGoogle Scholar
  16. 16.
    Edlundh-Rose E, Egyhazi S, Omholt K et al (2006) NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res 16:471–478PubMedCrossRefGoogle Scholar
  17. 17.
    Eskandarpour M, Kiaii S, Zhu C et al (2005) Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer 115:65–73PubMedCrossRefGoogle Scholar
  18. 18.
    Eychene A, Dusanter-Fourt I, Barnier JV et al (1995) Expression and activation of B-Raf kinase isoforms in human and murine leukemia cell lines. Oncogene 10:1159–1165PubMedGoogle Scholar
  19. 19.
    Flaherty KT, Puzanov I, Kim KB et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedCrossRefGoogle Scholar
  20. 20.
    Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  21. 21.
    Ichii-Nakato N, Takata M, Takayanagi S et al (2006) High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol 126:2111–2118PubMedCrossRefGoogle Scholar
  22. 22.
    Inoue T, Nabeshima K, Kataoka H et al (1996) Feasibility of archival non-buffered formalin-fixed and paraffin-embedded tissues for PCR amplification: an analysis of resected gastric carcinoma. Pathol Int 46:997–1004PubMedCrossRefGoogle Scholar
  23. 23.
    Kefford R, Arkenau H, Brown MO et al (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol 28:15s (suppl; abstr 8503)Google Scholar
  24. 24.
    Kimura ET, Nikiforova MN, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457PubMedGoogle Scholar
  25. 25.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  26. 26.
    Lamy A, Blanchard F, Le Pessot F et al (2011) Metastatic colorectal cancer KRAS genotyping in routine practice: results and pitfalls. Mod Pathol. doi: 10.1038/modpathol.2011.60
  27. 27.
    Lin J, Goto Y, Murata H et al (2011) Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer 104:464–468PubMedCrossRefGoogle Scholar
  28. 28.
    Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRefGoogle Scholar
  29. 29.
    Nikiforov YE (2011) Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med 135:569–577PubMedGoogle Scholar
  30. 30.
    Platz A, Egyhazi S, Ringborg U et al (2008) Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 1:395–405PubMedCrossRefGoogle Scholar
  31. 31.
    Pollock PM, Harper UL, Hansen KS et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedCrossRefGoogle Scholar
  32. 32.
    Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1, 320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRefGoogle Scholar
  33. 33.
    Singer G, Oldt R 3rd, Cohen Y et al (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 95:484–486PubMedCrossRefGoogle Scholar
  34. 34.
    Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867PubMedCrossRefGoogle Scholar
  35. 35.
    Yuen ST, Davies H, Chan TL et al (2002) Similarity of the phenotypic patterns associated with BRAF and KRAS mutations in colorectal neoplasia. Cancer Res 62:6451–6455PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David Capper
    • 1
    • 2
  • Matthias Preusser
    • 1
    • 3
  • Antje Habel
    • 1
  • Felix Sahm
    • 1
    • 2
  • Ulrike Ackermann
    • 4
  • Genevieve Schindler
    • 5
  • Stefan Pusch
    • 2
  • Gunhild Mechtersheimer
    • 6
  • Hanswalter Zentgraf
    • 4
  • Andreas von Deimling
    • 1
    • 2
  1. 1.Department of Neuropathology, Institute of PathologyRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Clinical Cooperation Unit NeuropathologyGerman Cancer Research CenterHeidelbergGermany
  3. 3.Department of Medicine I and Comprehensive Cancer Center, CNS Tumours Unit (CCC-CNS)Medical University of ViennaViennaAustria
  4. 4.Monoclonal Antibody UnitGerman Cancer Research CenterHeidelbergGermany
  5. 5.Department of NeurosurgeryMedical Faculty of the Ruprecht-Karls-University HeidelbergMannheimGermany
  6. 6.Institute of PathologyRuprecht-Karls-University HeidelbergHeidelbergGermany

Personalised recommendations