Acta Neuropathologica

, 122:75 | Cite as

Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death

  • Matthias Elstner
  • Christopher M. Morris
  • Katharina Heim
  • Andreas Bender
  • Divya Mehta
  • Evelyn Jaros
  • Thomas Klopstock
  • Thomas Meitinger
  • Douglass M. Turnbull
  • Holger Prokisch
Original Paper


Dopaminergic (DA) neuron degeneration is a feature of brain aging but is markedly increased in patients with Parkinson’s disease (PD). Recent data indicate elevated metabolic stress as a possible explanation for DA neuron vulnerability. Using laser capture microdissection, we isolated DA neurons from the substantia nigra pars compacta of PD patients, age-matched and young controls to determine transcriptional changes by expression profiling and pathway analysis. We verified our findings by comparison to a published dataset. Parallel processing of isolated neurons and bulk tissue allowed the discrimination of neuronal and glial transcription signals. Our data show that genes known to be involved in neural plasticity, axon and synaptic function, as well as cell fate are differentially regulated in aging DA neurons. The transcription patterns in aging suggest a largely maintained expression of genes in energy-related pathways in surviving neurons, possibly supported by the mediation of PPAR/RAR and CREB signaling. In contrast, a profound down-regulation of genes coding for mitochondrial and ubiquitin–proteasome system proteins was seen in PD when compared to the age-matched controls. This is in accordance with the established mitochondrial dysfunction in PD and provides evidence for mitochondrial impairment at the transcriptional level. In addition, the PD neurons had disrupted pathways that comprise a network involved in the control of energy metabolism and cell survival in response to growth factors, oxidative stress, and nutrient deprivation (PI3K/Akt, mTOR, eIF4/p70S6K and Hif-1α). PI3K/Akt and mTOR signaling are central hubs of this network which is of relevance to longevity and—together with induction of mitochondrial biogenesis—may constitute potential targets for therapeutic intervention.


Parkinson’s disease Aging Dopaminergic neuron Glia Gene expression Pathway analysis Mitochondria Energy metabolism PI3K/Akt mTOR Hif-1α 

Supplementary material

401_2011_828_MOESM1_ESM.doc (382 kb)
Supplementary material 1 (DOC 382 kb)
401_2011_828_MOESM2_ESM.doc (1 mb)
Supplementary material 2 (DOC 1073 kb)
401_2011_828_MOESM3_ESM.doc (5.2 mb)
Supplementary material 3 (DOC 5324 kb)
401_2011_828_MOESM4_ESM.xls (2 mb)
Supplementary material 4 (XLS 2041 kb)
401_2011_828_MOESM5_ESM.xls (62 kb)
Supplementary material 5 (XLS 61 kb)
401_2011_828_MOESM6_ESM.xls (114 kb)
Supplementary material 6 (XLS 114 kb)


  1. 1.
    Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219PubMedCrossRefGoogle Scholar
  2. 2.
    Aleyasin H, Rousseaux MW, Marcogliese PC et al (2010) DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci USA 107:3186–3191PubMedCrossRefGoogle Scholar
  3. 3.
    Altar CA, Vawter MP, Ginsberg SD (2009) Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology 34:18–54PubMedCrossRefGoogle Scholar
  4. 4.
    Atz M, Walsh D, Cartagena P et al (2007) Methodological considerations for gene expression profiling of human brain. J Neurosci Methods 163:295–309PubMedCrossRefGoogle Scholar
  5. 5.
    Benard G, Bellance N, Jose C, Melser S, Nouette-Gaulain K, Rossignol R (2010) Multi-site control and regulation of mitochondrial energy production. Biochim Biophys Acta 1797:698–709PubMedCrossRefGoogle Scholar
  6. 6.
    Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517PubMedCrossRefGoogle Scholar
  7. 7.
    Bender A, Schwarzkopf RM, McMillan A et al (2008) Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol 255:1231–1235PubMedCrossRefGoogle Scholar
  8. 8.
    Betarbet R, Canet-Aviles RM, Sherer TB et al (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22:404–420PubMedCrossRefGoogle Scholar
  9. 9.
    Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535PubMedCrossRefGoogle Scholar
  10. 10.
    Bossers K, Meerhoff G, Balesar R et al (2009) Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol 19:91–107PubMedCrossRefGoogle Scholar
  11. 11.
    Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  12. 12.
    Buesa C, Maes T, Subirada F, Barrachina M, Ferrer I (2004) DNA chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol 63:1003–1014PubMedGoogle Scholar
  13. 13.
    Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291PubMedCrossRefGoogle Scholar
  14. 14.
    Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037PubMedCrossRefGoogle Scholar
  15. 15.
    Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B et al (2007) Effects of gender on nigral gene expression and Parkinson disease. Neurobiol Dis 26:606–614PubMedCrossRefGoogle Scholar
  16. 16.
    Chan CS, Guzman JN, Ilijic E et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086PubMedCrossRefGoogle Scholar
  17. 17.
    Croisier E, Graeber MB (2006) Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 112:517–530PubMedCrossRefGoogle Scholar
  18. 18.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRefGoogle Scholar
  19. 19.
    Domingues AF, Arduíno DM, Esteves AR, Swerdlow RH, Oliveira CR, Cardoso SM (2008) Mitochondria and ubiquitin-proteasomal system interplay: relevance to Parkinson’s disease. Free Radic Biol Med 45:820–825PubMedCrossRefGoogle Scholar
  20. 20.
    Duke DC, Moran LB, Kalaitzakis ME et al (2006) Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson’s disease. Neurogenetics 7:139–148PubMedCrossRefGoogle Scholar
  21. 21.
    Elbaz A, Moisan F (2008) Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol 21:454–460PubMedCrossRefGoogle Scholar
  22. 22.
    Elstner M, Andreoli C, Klopstock T, Meitinger T, Prokisch H (2009) The mitochondrial proteome database: MitoP2. Methods Enzymol 457:3–20PubMedCrossRefGoogle Scholar
  23. 23.
    Elstner M, Morris CM, Heim K et al (2009) Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson’s disease gene. Ann Neurol 66:792–798PubMedCrossRefGoogle Scholar
  24. 24.
    Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318PubMedCrossRefGoogle Scholar
  25. 25.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301PubMedCrossRefGoogle Scholar
  26. 26.
    Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT (2001) Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276:11420–11426PubMedCrossRefGoogle Scholar
  27. 27.
    Gagne JJ, Power MC (2010) Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74:995–1002PubMedCrossRefGoogle Scholar
  28. 28.
    Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med 11:e22PubMedCrossRefGoogle Scholar
  29. 29.
    Geisler S, Holmström KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131PubMedCrossRefGoogle Scholar
  30. 30.
    Gerlach M, Double KL, Youdim MB, Riederer P (2000) Strategies for the protection of dopaminergic neurons against neurotoxicity. Neurotox Res 2:99–114PubMedCrossRefGoogle Scholar
  31. 31.
    Graeber MB (2008) Twenty-first century brain banking: at the crossroads. Acta Neuropathol 115:493–496PubMedCrossRefGoogle Scholar
  32. 32.
    Grunblatt E, Mandel S, Jacob-Hirsch J et al (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:1543–1573PubMedCrossRefGoogle Scholar
  33. 33.
    Guzman JN, Sanchez-Padilla J, Wokosin D et al (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696–700PubMedCrossRefGoogle Scholar
  34. 34.
    Hauser MA, Li YJ, Xu H et al (2005) Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch Neurol 62:917–921PubMedCrossRefGoogle Scholar
  35. 35.
    Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203PubMedCrossRefGoogle Scholar
  36. 36.
    Klinge CM (2008) Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem 105:1342–1351PubMedCrossRefGoogle Scholar
  37. 37.
    Lee DW, Rajagopalan S, Siddiq A et al (2009) Inhibition of prolyl hydroxylase protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity: model for the potential involvement of the hypoxia-inducible factor pathway in Parkinson disease. J Biol Chem 284:29065–29076PubMedCrossRefGoogle Scholar
  38. 38.
    Lesnick TG, Papapetropoulos S, Mash DC et al (2007) A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet 3:e98PubMedCrossRefGoogle Scholar
  39. 39.
    López-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819PubMedCrossRefGoogle Scholar
  40. 40.
    Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891PubMedCrossRefGoogle Scholar
  41. 41.
    Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J Neurosci 30:1166–1175PubMedCrossRefGoogle Scholar
  42. 42.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872PubMedCrossRefGoogle Scholar
  43. 43.
    Miller RM, Kiser GL, Kaysser-Kranich TM, Lockner RJ, Palaniappan C, Federoff HJ (2006) Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson’s disease. Neurobiol Dis 21:305–313PubMedCrossRefGoogle Scholar
  44. 44.
    Mirnics K, Pevsner J (2004) Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 7:434–439PubMedCrossRefGoogle Scholar
  45. 45.
    Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RK, Graeber MB (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 7:1–11PubMedCrossRefGoogle Scholar
  46. 46.
    Moran LB, Graeber MB (2008) Towards a pathway definition of Parkinson’s disease: a complex disorder with links to cancer, diabetes and inflammation. Neurogenetics 9:1–13PubMedCrossRefGoogle Scholar
  47. 47.
    Nakaso K, Ito S, Nakashima K (2008) Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neurosci Lett 432:146–150PubMedCrossRefGoogle Scholar
  48. 48.
    Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298PubMedCrossRefGoogle Scholar
  49. 49.
    Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782:691–699PubMedGoogle Scholar
  50. 50.
    Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W (2008) Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis 32:16–25PubMedCrossRefGoogle Scholar
  51. 51.
    Riederer P, Youdim MB, Mandel S, Gerlach M, Grünblatt E (2008) Genomic aspects of sporadic Parkinson’s disease. Parkinsonism Relat Disord 14:S88–S91PubMedCrossRefGoogle Scholar
  52. 52.
    Rollo CD (2009) Dopamine and aging: intersecting facets. Neurochem Res 34:601–629PubMedCrossRefGoogle Scholar
  53. 53.
    Ross GW, Petrovitch H, Abbott RD et al (2004) Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol 56:532–539PubMedCrossRefGoogle Scholar
  54. 54.
    Rudow G, O’Brien R, Savonenko AV et al (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115:461–470PubMedCrossRefGoogle Scholar
  55. 55.
    Sekoguchi E, Sato N, Yasui A et al (2003) A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem 278:38796–38802PubMedCrossRefGoogle Scholar
  56. 56.
    Simunovic F, Yi M, Wang Y et al (2008) Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology. Brain 132:1795–1809PubMedCrossRefGoogle Scholar
  57. 57.
    Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC (2010) Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One 5:e8856PubMedCrossRefGoogle Scholar
  58. 58.
    Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92PubMedCrossRefGoogle Scholar
  59. 59.
    Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6:933–938PubMedCrossRefGoogle Scholar
  60. 60.
    Sutherland GT, Matigian NA, Chalk AM et al (2009) A cross-study transcriptional analysis of Parkinson’s disease. PLoS One 4:e4955PubMedCrossRefGoogle Scholar
  61. 61.
    Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O, Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12:1129–1135PubMedCrossRefGoogle Scholar
  62. 62.
    Timmons S, Coakley MF, Moloney AM, O’ Neill C (2009) Akt signal transduction dysfunction in Parkinson’s disease. Neurosci Lett 467:30–35PubMedCrossRefGoogle Scholar
  63. 63.
    Vanitallie TB (2008) Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction. Metabolism 57(Suppl 2):S50–S55PubMedCrossRefGoogle Scholar
  64. 64.
    Vasseur S, Afzal S, Tardivel-Lacombe J, Park DS, Iovanna JL, Mak TW (2009) DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc Natl Acad Sci USA 106:1111–1116PubMedCrossRefGoogle Scholar
  65. 65.
    Vawter MP, Tomita H, Meng F et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 11:663–679CrossRefGoogle Scholar
  66. 66.
    Vogt IR, Lees AJ, Evert BO, Klockgether T, Bonin M, Wüllner U (2006) Transcriptional changes in multiple system atrophy and Parkinson’s disease putamen. Exp Neurol 199:465–478PubMedCrossRefGoogle Scholar
  67. 67.
    Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO (2007) Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282:18793–18799PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137:5–16Google Scholar
  69. 69.
    Zheng B, Liao Z, Locascio JJ, et al (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Matthias Elstner
    • 1
    • 2
  • Christopher M. Morris
    • 3
    • 4
  • Katharina Heim
    • 2
  • Andreas Bender
    • 1
  • Divya Mehta
    • 2
  • Evelyn Jaros
    • 4
  • Thomas Klopstock
    • 1
  • Thomas Meitinger
    • 2
    • 5
  • Douglass M. Turnbull
    • 6
  • Holger Prokisch
    • 2
    • 5
  1. 1.Department of Neurology with Friedrich-Baur-Institute, Klinikum GroßhadernLudwig-Maximilians-UniversityMunichGermany
  2. 2.Institute of Human Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
  3. 3.Medical Toxicology Centre, Wolfson Unit of Clinical Pharmacology, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
  4. 4.Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
  5. 5.Institute of Human GeneticsTechnical University MunichMunichGermany
  6. 6.Mitochondrial Research Group, Institute of Ageing and Health, Newcastle University Centre for Brain Ageing and VitalityNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations