Acta Neuropathologica

, Volume 121, Issue 5, pp 589–595

Alzheimer’s pathogenesis: is there neuron-to-neuron propagation?

Review

Abstract

There is increasing interest in the early phase of Alzheimer’s disease before severe neuronal dysfunction occurs, but it is still not known when or where in the central nervous system the underlying pathological process begins. In this review, we discuss the idea of possible disease progression from the locus coeruleus to the transentorhinal region of the cerebral cortex via neuron-to-neuron transmission and transsynaptic transport of tau protein aggregates, and we speculate that such a mechanism together with the very long prodromal period that characterizes Alzheimer’s disease may be indicative of a prion-like pathogenesis for this tauopathy. The fact that AT8-immunoreactive abnormal tau aggregates (pretangles) develop within proximal axons of noradrenergic coeruleus projection neurons in the absence of both tau lesions (pretangles, NFTs/NTs) in the transentorhinal region as well as cortical amyloid-β pathology means that currently used neuropathological stages for Alzheimer’s disease will have to be reclassified.

Keywords

Alzheimer’s disease Amyloid-β Locus coeruleus Microtubules Pretangles Protein misfolding Prion diseases Staging Tau 

References

  1. 1.
    Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790PubMedCrossRefGoogle Scholar
  2. 2.
    Alafuzoff I, Arzberger T, Al-Sarraj S et al (2008) Staging of neurofibrillary pathology in Alzheimer’s disease: a study for the Brain Net Europe Consortium. Brain Pathol 18:484–496PubMedGoogle Scholar
  3. 3.
    Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5:375–384PubMedCrossRefGoogle Scholar
  4. 4.
    Amieva H, Le Goff M, Millet X et al (2008) Prodromal Alzheimer’s disease: successive emergence of clinical symptoms. Ann Neurol 64:492–498PubMedCrossRefGoogle Scholar
  5. 5.
    Angot E, Steiner JA, Hansen C, Brundin P (2010) Are synucleinopathies prion-like disorders? Lancet Neurol 9:1128–1138PubMedCrossRefGoogle Scholar
  6. 6.
    Arnold SE, Hyman BT, Flory J et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cerebr Cortex 1:103–116CrossRefGoogle Scholar
  7. 7.
    Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672PubMedCrossRefGoogle Scholar
  8. 8.
    Benarroch EE (2009) The locus coeruleus norepinephrine system. Neurology 73:1699–1704PubMedCrossRefGoogle Scholar
  9. 9.
    Bobinski M, Wegiel J, Tarnawski M et al (1998) Duration of neurofibrillary changes in the hippocampal pyramidal neurons. Brain Res 799:156–158PubMedCrossRefGoogle Scholar
  10. 10.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  11. 11.
    Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357PubMedCrossRefGoogle Scholar
  12. 12.
    Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567PubMedCrossRefGoogle Scholar
  13. 13.
    Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-β formation. Neurobiol Aging 25:713–718PubMedCrossRefGoogle Scholar
  14. 14.
    Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181PubMedCrossRefGoogle Scholar
  15. 15.
    Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307PubMedCrossRefGoogle Scholar
  16. 16.
    Buée L, Bussiere T, Buée-Scherrer V et al (2003) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130CrossRefGoogle Scholar
  17. 17.
    Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913PubMedCrossRefGoogle Scholar
  18. 18.
    Cowan CM, Bossing T, Page A et al (2010) Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120:593–604PubMedCrossRefGoogle Scholar
  19. 19.
    Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. Trends Neurosci 23:265–271PubMedCrossRefGoogle Scholar
  20. 20.
    Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436PubMedCrossRefGoogle Scholar
  21. 21.
    DeLacoste MC, White CL (1993) The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system. Neurobiol Aging 14:1–16CrossRefGoogle Scholar
  22. 22.
    Deramecourt V, Lebert F, Debachy B, Mackowiak-Cordoliani MA, Bombois S, Kerdraon O, Buée L, Maurage CA, Pasquier F (2010) Prediction of pathology in primary progressive language and speech disorders. Neurology 74:42–49PubMedCrossRefGoogle Scholar
  23. 23.
    Desplats P, Lee H-J, Bae E-J et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. PNAS 106:13010–13015PubMedCrossRefGoogle Scholar
  24. 24.
    Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157PubMedCrossRefGoogle Scholar
  25. 25.
    Duyckaerts C, Hauw JJ (1997) Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 18:362–369PubMedCrossRefGoogle Scholar
  26. 26.
    Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol 41:392–409PubMedCrossRefGoogle Scholar
  27. 27.
    Frost B, Diamond MI (2010) The expanding realm of prion phenomena in neurodegenerative disease. Prion 3:74–77CrossRefGoogle Scholar
  28. 28.
    Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852PubMedCrossRefGoogle Scholar
  29. 29.
    Frost B, Ollesch J, Wille H, Diamond MI (2009) Conformational diversity of wild-type tau fibrils specified by templated conformation change. J Biol Chem 284:3546–3551PubMedCrossRefGoogle Scholar
  30. 30.
    German DC, Manaye KF, White CL 3rd (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676PubMedCrossRefGoogle Scholar
  31. 31.
    Goedert M, Jakes R, Vandermeeren E (1995) Monoclonal antibody AT8 recognizes tau protein phosphorylated at serine 202 and threonine 205. Neurosci Lett 189:167–170PubMedCrossRefGoogle Scholar
  32. 32.
    Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325PubMedCrossRefGoogle Scholar
  33. 33.
    Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9:195–207PubMedGoogle Scholar
  34. 34.
    Gousset K, Zurzolo C (2008) Tunnelling nanotubes: a highway for prion spreading? Prion 3:94–98CrossRefGoogle Scholar
  35. 35.
    Grinberg LT, Rüb U, Ferretti RE et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416PubMedCrossRefGoogle Scholar
  36. 36.
    Grudzien A, Shaw P, Weintraub S et al (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335PubMedCrossRefGoogle Scholar
  37. 37.
    Guo JL, Lee VM (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem. doi:10.1074/jbc.M110.209296
  38. 38.
    Haglund M, Sjöbeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532PubMedCrossRefGoogle Scholar
  39. 39.
    Hansen C, Angot E, Bergström A-L et al (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725Google Scholar
  40. 40.
    Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388PubMedCrossRefGoogle Scholar
  41. 41.
    Hardy JA, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  42. 42.
    Hyman BT (1998) New pathological criteria for Alzheimer’s disease. Arch Neurol 55:1174–1176PubMedCrossRefGoogle Scholar
  43. 43.
    Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69PubMedCrossRefGoogle Scholar
  44. 44.
    Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG (2005) The evolution and pathology of frontotemporal dementia. Brain 128:1996–2005PubMedCrossRefGoogle Scholar
  45. 45.
    Klein WL, Stine WB Jr, Teplow DB (2004) Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol Aging 25:569–580PubMedCrossRefGoogle Scholar
  46. 46.
    Kovacech B, Skrabana R, Novak M (2010) Transition of tau protein from disordered to misordered in Alzheimer’s disease. Neurodegen Dis 7:24–27CrossRefGoogle Scholar
  47. 47.
    Li B, Chohan MO, Grundke-Iqbal I, Iqbal K (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511PubMedCrossRefGoogle Scholar
  48. 48.
    Li S, Shankar GM, Selkoe DJ (2010) How do soluble oligomers of amyloid beta-protein impair hippocampal synaptic plasticity? Front Cell Neurosci 4:5PubMedGoogle Scholar
  49. 49.
    Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer’s disease: a meta-analysis. Neurobiol Aging 24:1–23PubMedCrossRefGoogle Scholar
  50. 50.
    Mackenzie IRA, Neumann M, Bigio EH, Dickson DW et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRefGoogle Scholar
  51. 51.
    Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90PubMedCrossRefGoogle Scholar
  52. 52.
    Mattson MP (2006) Molecular and cellular pathways towards and away from Alzheimer’s disease. In: Jucker M, Beyreuther K, Haass C, Nitsch R, Christen Y (eds) Alzheimer: 100 years and beyond. Springer, Berlin, pp 371–378CrossRefGoogle Scholar
  53. 53.
    Mattsson N, Sävman K, Osterlundh G et al (2010) Converging molecular pathways in human and neural development and degeneration. Neurosci Res 66:330–332PubMedCrossRefGoogle Scholar
  54. 54.
    Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052PubMedCrossRefGoogle Scholar
  55. 55.
    Moceri VM, Kukull WA, Emanuel I et al (2000) Early-life risk factors and the development of Alzheimer’s disease. Neurology 54:415–420PubMedGoogle Scholar
  56. 56.
    Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197PubMedCrossRefGoogle Scholar
  57. 57.
    Neumann M (2009) Molecular neuropathology of TDP-43 proteinopathies. Int J Mol Sci 10:232–246PubMedCrossRefGoogle Scholar
  58. 58.
    Olanow CW, Prusiner SB (2009) Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci USA 106:12571–12572PubMedCrossRefGoogle Scholar
  59. 59.
    Pan-Montojo F, Anichtchik O, Dening Y et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5:38762CrossRefGoogle Scholar
  60. 60.
    Parvizi J, Van Hoesen GW, Damasio A (2001) The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66PubMedCrossRefGoogle Scholar
  61. 61.
    Pearson RCA (1996) Cortical connections and the pathology of Alzheimer’s disease. Neurodegeneration 5:429–434PubMedCrossRefGoogle Scholar
  62. 62.
    Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268PubMedCrossRefGoogle Scholar
  63. 63.
    Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20PubMedCrossRefGoogle Scholar
  64. 64.
    Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398PubMedCrossRefGoogle Scholar
  65. 65.
    Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223PubMedCrossRefGoogle Scholar
  66. 66.
    Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711PubMedCrossRefGoogle Scholar
  67. 67.
    Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447PubMedCrossRefGoogle Scholar
  68. 68.
    Simic G, Stanic G, Mladinov M et al (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol 35:532–554PubMedCrossRefGoogle Scholar
  69. 69.
    Simons M, Raposo G (2009) Exosomes: vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581PubMedCrossRefGoogle Scholar
  70. 70.
    Spires-Johnes TL, Stoothoff WH, de Calignon A et al (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159CrossRefGoogle Scholar
  71. 71.
    Stamer K, Vogel R, Thies E et al (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063PubMedCrossRefGoogle Scholar
  72. 72.
    Teter B, Ashford JW (2002) Neuroplasticity in Alzheimer’s disease. J Neurosci Res 70:402–437PubMedCrossRefGoogle Scholar
  73. 73.
    Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800PubMedGoogle Scholar
  74. 74.
    Tsermentseli S, Leigh PN, Goldstein LH (2011) The anatomy of cognitive impairment in amyotrophic lateral sclerosis: More than frontal lobe dysfunction. Cortex (Epub ahead of print)Google Scholar
  75. 75.
    Von Bartheld CS, Altick AL (2011) Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 93:313–340CrossRefGoogle Scholar
  76. 76.
    Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814PubMedCrossRefGoogle Scholar
  77. 77.
    Wilson AC, Dugger BN, Dickson DW, Wang DS (2011) TDP-43 in aging and Alzheimer’s disease—a review. Int J Clin Exp Pathol 4:147–155PubMedGoogle Scholar
  78. 78.
    Wirths O, Multhaup G, Bayer TA (2004) A modified β-amyloid hypothesis: intraneuronal accumulation of the β-amyloid peptide—the first step of a fatal cascade. J Neurochem 91:513–520PubMedCrossRefGoogle Scholar
  79. 79.
    Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Clinical Neuroanatomy (Department of Neurology), Center for Clinical ResearchUniversity of UlmUlmGermany

Personalised recommendations