Acta Neuropathologica

, Volume 121, Issue 3, pp 381–396 | Cite as

Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups

  • David W. Ellison
  • James Dalton
  • Mehmet Kocak
  • Sarah Leigh Nicholson
  • Charles Fraga
  • Geoff Neale
  • Anna M. Kenney
  • Dan J. Brat
  • Arie Perry
  • William H. Yong
  • Roger E. Taylor
  • Simon Bailey
  • Steven C. Clifford
  • Richard J. Gilbertson
Original Paper


Medulloblastoma is heterogeneous, being characterized by molecular subgroups that demonstrate distinct gene expression profiles. Activation of the WNT or SHH signaling pathway characterizes two of these molecular subgroups, the former associated with low-risk disease and the latter potentially targeted by novel SHH pathway inhibitors. This manuscript reports the validation of a novel diagnostic immunohistochemical method to distinguish SHH, WNT, and non-SHH/WNT tumors and details their associations with clinical, pathological and cytogenetic variables. A cohort (n = 235) of medulloblastomas from patients aged 0.4–52 years was studied for expression of four immunohistochemical markers: GAB1, β-catenin, filamin A, and YAP1. Immunoreactivity (IR) for GAB1 characterizes only SHH tumors and nuclear IR for β-catenin only WNT tumors. IRs for filamin A and YAP1 identify SHH and WNT tumors. SHH, WNT, and non-SHH/WNT tumors contributed 31, 14, and 55% to the series. All desmoplastic/nodular (D/N) medulloblastomas were SHH tumors, while most WNT tumors (94%) had a classic phenotype. Monosomy 6 was strongly associated with WNT tumors, while PTCH1 loss occurred almost exclusively among SHH tumors. MYC or MYCN amplification and chromosome 17 imbalance occurred predominantly among non-SHH/WNT tumors. Among patients aged 3–16 years and entered onto the SIOP PNET3 trial, outcome was significantly better for children with WNT tumors, when compared to SHH or non-SHH/WNT tumors, which showed similar survival curves. However, high-risk factors (M+ disease, LC/A pathology, MYC amplification) significantly influenced survival in both SHH and non-SHH/WNT groups. We describe a robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples. In corroborating other studies that indicate the value of combining clinical, pathological, and molecular variables in therapeutic stratification schemes for medulloblastoma, we also provide the first outcome data based on a clinical trial cohort and novel data on how molecular subgroups are distributed across the range of disease.


Medulloblastoma FFPE Tissue MYCN Amplification Molecular Subgroup Classic Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support from the American Lebanese Syrian Associated Charities. This study was conducted with appropriate ethics committee approval: St. Jude Children’s Research Hospital XPD07-107/IRB and Newcastle/North Tyneside REC 07/Q0905/71.

Supplementary material

401_2011_800_MOESM1_ESM.docx (4.7 mb)
Supplementary Figure 1: Classic medulloblastoma. Most tumors demonstrate sheets of small densely packed round cells with a high nuclear:cytoplasmic ratio (a), although 14% of classic medulloblastomas in this series contained elongated cells arranged in a vague fascicular pattern (b). A small proportion (7%) of classic tumors showed nodules of differentiated neurocytic cells (c), without surrounding desmoplasia (d; reticulin stain). Other manifestations of focal neuronal differentiation included dense aggregates of tiny neurocytes (e) or irregular regions of neurocytes and ganglion cells against a neuropil-like matrix (f). Non-desmoplastic nodular regions (g) and dense neurocytic clusters (h) express neuronal proteins, such as synaptophysin (illustrated). All foci of neuronal differentiation had a low growth fraction, as estimated by Ki-67 immunolabeling in illustrated for this neurocytic cluster (i). Foci of astrocytic differentiation are exceptional (j). (DOCX 4811 kb)
401_2011_800_MOESM2_ESM.docx (3.1 mb)
Supplementary Figure 2: Desmoplastic medulloblastoma. The archetypal desmoplastic/nodular medulloblastoma contains scattered nodules of neurocytes against a neuropil-like matrix (a). Nodules are separated by reticulin-rich desmoplastic regions (b; reticulin stain). The MBEN is characterized by large irregular nodules that dominate the tumor’s architecture (c). In the MBEN, strikingly monomorphic neurocytes may form ribbons in elongated nodules and are often separated from a nodule’s periphery by an anuclear zone (d). Strong expression of NEU-N characterizes intranodular neurocytes (e), while there is a marked disparity in growth fraction between nodular and internodular regions (f; Ki-67 immunoreactivity). Paucinodular medulloblastomas show widespread desmoplasia, among which small nodules can be detected (g). The nodules do not have the low cell density of the MBEN, and a neurocytic morphology is subtle, but expression of neuronal proteins can be demonstrated (h; NEU-N immunoreactivity). Intranodular anaplasia may be a feature of some D/N medulloblastomas (i), as may invasion of nodules by embryonal cells (j). (DOCX 3133 kb)
401_2011_800_MOESM3_ESM.docx (2.1 mb)
Supplementary Figure 3: Large cell/anaplastic medulloblastoma. Anaplastic medulloblastomas show marked cytological pleomorphism, with molding of polyhedral nuclei against one another, cell wrapping, and high mitotic and apoptotic counts (a, b, c). Despite no obvious morphological differentiation, anaplastic tumors usually express neuronal markers, including neurofilament proteins, which are rarely expressed in classic tumors (d; NFP immunoreactivity). The large cell phenotype is different from anaplastic morphology and demonstrates groups of uniform large cells with prominent nucleoli (e). A few tumors from infants demonstrated sheets of uniform round cells with one or two prominent nucleoli (f). (DOCX 2130 kb)
401_2011_800_MOESM4_ESM.docx (749 kb)
Supplementary Figure 4: Idiosyncratic perivascular niche phenotype. A perivascular arrangement of anaplastic embryonal cells gives way to a more differentiated phenotype, with neurocytic cells against a neuropil-like matrix, away from blood vessels (a, b). (DOCX 748 kb)
401_2011_800_MOESM5_ESM.doc (212 kb)
Supplementary Figure 5: Interphase FISH. Monosomy 6 (a). PTCH1 (green signal) loss (b). Isodicentric 17q (c). MYC amplification (d). (DOC 211 kb)
401_2011_800_MOESM6_ESM.xls (60 kb)
Supplementary Table 1 (XLS 60.5 kb)


  1. 1.
    Al-Halabi H, Nantel A, Klekner A, Guiot MC, Albrecht S, Hauser P, Garami M, Bognar L, Kavan P, Gerges N, Shirinian M, Roberge D, Muanza T, Jabado N (2010) Preponderance of sonic hedgehog pathway activation characterizes adult medulloblastoma. Acta Neuropathol. doi: 10.1007/s00401-010-0780-0 (on line, early release)
  2. 2.
    Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, Ligon K, Meyerson M, Mesirov JP, Pomeroy SL (2010) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. doi: 10.1200/JCO.2010.28.5148 (on line, early release)
  3. 3.
    Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D, Ellison DW (2006) Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5:2666–2670CrossRefPubMedGoogle Scholar
  4. 4.
    Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T (2001) Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 61:7039–7043PubMedGoogle Scholar
  5. 5.
    de Wit MC, Kros JM, Halley DJ, de Coo IF, Verdijk R, Jacobs BC, Mancini GM (2009) Filamin A mutation, a common cause for periventricular heterotopia, aneurysms and cardiac defects. J Neurol Neurosurg Psychiatry 80:426–428CrossRefPubMedGoogle Scholar
  6. 6.
    Doggrell SA (2010) The hedgehog pathway inhibitor GDC-0449 shows potential in skin and other cancers. Expert Opin Investig Drugs 19:451–454CrossRefPubMedGoogle Scholar
  7. 7.
    Dong J, Gailani MR, Pomeroy SL, Reardon D, Bale AE (2000) Identification of PATCHED mutations in medulloblastomas by direct sequencing. Hum Mutat 16:89–90CrossRefPubMedGoogle Scholar
  8. 8.
    Ellison DW (2010) Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol 120:305–316CrossRefPubMedGoogle Scholar
  9. 9.
    Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, Zhao W, Nicholson SL, Taylor RE, Bailey S, Clifford SC (2010) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol. doi: 10.1200/JCO.2010.30.2810 (on line, early release)
  10. 10.
    Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) Beta-Catenin status predicts a favorable outcome in childhood medulloblastoma. J Clin Oncol 23:7951–7957CrossRefPubMedGoogle Scholar
  11. 11.
    Evans DG, Farndon PA, Burnell LD, Gattamaneni HR, Birch JM (1991) The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br J Cancer 64:959–961CrossRefPubMedGoogle Scholar
  12. 12.
    Fattet S, Haberler C, Legoix P, Varlet P, Lellouch-Tubiana A, Lair S, Manie E, Raquin MA, Bours D, Carpentier S, Barillot E, Grill J, Doz F, Puget S, Janoueix-Lerosey I, Delattre O (2009) Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218:86–94CrossRefPubMedGoogle Scholar
  13. 13.
    Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM (2009) YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates sonic hedgehog-driven neural precursor proliferation. Genes Dev 23:2729–2741CrossRefGoogle Scholar
  14. 14.
    Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7:813–820CrossRefPubMedGoogle Scholar
  15. 15.
    Giangaspero F, Perilongo G, Fondelli MP, Brisigotti M, Carollo C, Burnelli R, Burger PC, Garre ML (1999) Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 91:971–977CrossRefPubMedGoogle Scholar
  16. 16.
    Giangaspero F, Rigobello L, Badiali M, Loda M, Andreini L, Basso G, Zorzi F, Montaldi A (1992) Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am J Surg Pathol 16:687–693CrossRefPubMedGoogle Scholar
  17. 17.
    Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Martin J, Finkelstein D, Pounds S, Weiss A, Patay Z, Scoggins M, Ogg R, Pei Y, Yang ZJ, Brun S, Lee Y, Zindy F, Lindsey JC, Taketo MM, Boop FA, Sanford RA, Gajjar A, Clifford SC, Roussel MF, McKinnon PJ, Gutmann DH, Ellison DW, Wechsler-Reya R, Gilbertson RJ (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature. doi: 10.1038/nature09587 (on line, early release)
  18. 18.
    Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol 3:341–365CrossRefPubMedGoogle Scholar
  19. 19.
    Gillgrass A, Cardiff RD, Sharan N, Kannan S, Muller WJ (2003) Epidermal growth factor receptor-dependent activation of Gab1 is involved in ErbB-2-mediated mammary tumor progression. Oncogene 22:9151–9155CrossRefPubMedGoogle Scholar
  20. 20.
    Giordana MT, Schiffer P, Lanotte M, Girardi P, Chio A (1999) Epidemiology of adult medulloblastoma. Int J Cancer 80:689–692CrossRefPubMedGoogle Scholar
  21. 21.
    Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113CrossRefPubMedGoogle Scholar
  22. 22.
    Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437CrossRefPubMedGoogle Scholar
  23. 23.
    Kimura H, Ng JM, Curran T (2008) Transient inhibition of the hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13:249–260CrossRefPubMedGoogle Scholar
  24. 24.
    Kiyatkin A, Aksamitiene E, Markevich NI, Borisov NM, Hoek JB, Kholodenko BN (2006) Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem 281:19925–19938CrossRefPubMedGoogle Scholar
  25. 25.
    Koch A, Hrychyk A, Hartmann W, Waha A, Mikeska T, Schuller U, Sorensen N, Berthold F, Goodyer CG, Wiestler OD, Birchmeier W, Behrens J, Pietsch T (2007) Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int J Cancer 121:284–291CrossRefPubMedGoogle Scholar
  26. 26.
    Koch A, Waha A, Tonn JC, Sorensen N, Berthold F, Wolter M, Reifenberger J, Hartmann W, Friedl W, Reifenberger G, Wiestler OD, Pietsch T (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93:445–449CrossRefPubMedGoogle Scholar
  27. 27.
    Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088CrossRefPubMedGoogle Scholar
  28. 28.
    Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW (2004) Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 10:5482–5493CrossRefPubMedGoogle Scholar
  29. 29.
    Louis DN (2007) WHO classification of tumours of the central nervous system. International Agency for Research on CancerGoogle Scholar
  30. 30.
    McManamy CS, Pears J, Weston CL, Hanzely Z, Ironside JW, Taylor RE, Grundy RG, Clifford SC, Ellison DW (2007) Nodule formation and desmoplasia in medulloblastomas—defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol 17:151–164CrossRefPubMedGoogle Scholar
  31. 31.
    Nishida K, Yoshida Y, Itoh M, Fukada T, Ohtani T, Shirogane T, Atsumi T, Takahashi-Tezuka M, Ishihara K, Hibi M, Hirano T (1999) Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood 93:1809–1816PubMedGoogle Scholar
  32. 32.
    Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2010) Medulloblastoma comprises four distinct molecular variants. J Clin. doi: 10.1200/JCO.2009.27.4324 (on line, early release)
  33. 33.
    Packer RJ (2010) Risk stratification of medulloblastoma: a paradigm for future childhood brain tumor management strategies. Curr Neurol Neurosci Rep. doi: 10.1007/s11910-010-0168-5 (on line, early release)
  34. 34.
    Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636CrossRefPubMedGoogle Scholar
  35. 35.
    Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, Sorensen N, Berthold F, Henk B, Schmandt N, Wolf HK, von Deimling A, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C (1997) Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57:2085–2088PubMedGoogle Scholar
  36. 36.
    Pizer BL, Clifford SC (2009) The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg 23:364–375CrossRefPubMedGoogle Scholar
  37. 37.
    Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57:842–845PubMedGoogle Scholar
  38. 38.
    Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803PubMedGoogle Scholar
  39. 39.
    Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, LoRusso PM, Von Hoff DD, de Sauvage FJ, Low JA (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361:1173–1178CrossRefPubMedGoogle Scholar
  40. 40.
    Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, Graf N, Emser A, Pietsch T, Wolff JE, Kortmann RD, Kuehl J (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986CrossRefPubMedGoogle Scholar
  41. 41.
    Rutkowski S, von Hoff K, Emser A, Zwiener I, Pietsch T, Figarella-Branger D, Giangaspero F, Ellison DW, Garre ML, Biassoni V, Grundy RG, Finlay JL, Dhall G, Raquin MA, Grill J (2010) Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol 28:4961–4968CrossRefPubMedGoogle Scholar
  42. 42.
    Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor RE, Bailey CC, Robinson K, Weston CL, Ellison D, Ironside J, Lucraft H, Gilbertson R, Tait DM, Walker DA, Pizer BL, Imeson J, Lashford LS (2003) Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J Clin Oncol 21:1581–1591CrossRefPubMedGoogle Scholar
  44. 44.
    Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931CrossRefPubMedGoogle Scholar
  45. 45.
    Vorechovsky I, Tingby O, Hartman M, Stromberg B, Nister M, Collins VP, Toftgard R (1997) Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene 15:361–366CrossRefPubMedGoogle Scholar
  46. 46.
    Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61:513–516PubMedGoogle Scholar
  47. 47.
    Zhong Z, Yeow WS, Zou C, Wassell R, Wang C, Pestell RG, Quong JN, Quong AA (2010) Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Res 70:2105–2114CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou AX, Hartwig JH, Akyurek LM (2010) Filamins in cell signaling, transcription and organ development. Trends Cell Biol 20:113–123CrossRefPubMedGoogle Scholar
  49. 49.
    Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F, Raffel C (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27:44–51CrossRefPubMedGoogle Scholar
  50. 50.
    Zurawel RH, Chiappa SA, Allen C, Raffel C (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58:896–899PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David W. Ellison
    • 1
  • James Dalton
    • 1
  • Mehmet Kocak
    • 2
  • Sarah Leigh Nicholson
    • 3
  • Charles Fraga
    • 1
  • Geoff Neale
    • 4
  • Anna M. Kenney
    • 5
  • Dan J. Brat
    • 6
  • Arie Perry
    • 7
  • William H. Yong
    • 8
  • Roger E. Taylor
    • 9
  • Simon Bailey
    • 10
  • Steven C. Clifford
    • 10
  • Richard J. Gilbertson
    • 11
  1. 1.Department of Pathology MS# 250St. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of BiostatisticsSt. Jude Children’s Research HospitalMemphisUSA
  3. 3.Department of PathologyNewcastle University Hospitals NHS TrustNewcastle-upon-TyneUK
  4. 4.Hartwell Center for Bioinformatics and BiotechnologySt. Jude Children’s Research HospitalMemphisUSA
  5. 5.Cancer Biology and GeneticsSloan Kettering InstituteNew YorkUSA
  6. 6.Department of PathologyEmory University School of MedicineAtlantaUSA
  7. 7.Department of PathologyUCSFSan FranciscoUSA
  8. 8.Department of PathologyUCLALos AngelesUSA
  9. 9.South West Wales Cancer Centre, Singleton HospitalSwanseaUK
  10. 10.Northern Institute for Cancer ResearchUniversity of NewcastleNewcastle-upon-TyneUK
  11. 11.Department of Developmental BiologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations