Acta Neuropathologica

, Volume 120, Issue 6, pp 707–718 | Cite as

Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas

  • Christian Hartmann
  • Bettina Hentschel
  • Wolfgang Wick
  • David Capper
  • Jörg Felsberg
  • Matthias Simon
  • Manfred Westphal
  • Gabriele Schackert
  • Richard Meyermann
  • Torsten Pietsch
  • Guido Reifenberger
  • Michael Weller
  • Markus Loeffler
  • Andreas von Deimling
Original Paper

Abstract

WHO grading of human brain tumors extends beyond a strictly histological grading system by providing a basis predictive for the clinical behavior of the respective neoplasm. For example, patients with glioblastoma WHO grade IV usually show a less favorable clinical course and receive more aggressive first-line treatment than patients with anaplastic astrocytoma WHO grade III. Here we provide evidence that the IDH1 status is more prognostic for overall survival than standard histological criteria that differentiate high-grade astrocytomas. We sequenced the isocitrate dehydrogenase 1 gene (IDH1) at codon 132 in 382 patients with anaplastic astrocytoma and glioblastoma from the NOA-04 trial and from a prospective translational cohort study of the German Glioma Network. Patients with anaplastic astrocytomas carried IDH1 mutations in 60%, and patients with glioblastomas in 7.2%. IDH1 was the most prominent single prognostic factor (RR 2.7; 95% CI 1.6–4.5) followed by age, diagnosis and MGMT. The sequence from more favorable to poorer outcome was (1) anaplastic astrocytoma with IDH1 mutation, (2) glioblastoma with IDH1 mutation, (3) anaplastic astrocytoma without IDH1 mutation and (4) glioblastoma without IDH1 mutation (p < 0.0001). In this combined set of anaplastic astrocytomas and glioblastomas both, IDH1 mutation and IDH1 expression status were of greater prognostic relevance than histological diagnosis according to the current WHO classification system. Our data indicate that much of the prognostic significance of patient age is due to the predominant occurrence of IDH1 mutations in younger patients. Immunohistochemistry using a mutation-specific antibody recognizing the R132H mutation yielded similar results. We propose to complement the current WHO classification and grading of high-grade astrocytic gliomas by the IDH1 mutation status and to use this combined histological and molecular classification in future clinical trials.

Keywords

Grading Classification Anaplastic astrocytoma Glioblastoma IDH1 mutation MGMT Age Immunohistochemistry Prognosis 

References

  1. 1.
    Balss J, Meyer J, Mueller W et al (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602CrossRefPubMedGoogle Scholar
  2. 2.
    Burger PC, Vogel FS, Green SB et al (1985) Glioblastoma multiforme and anaplastic astrocytoma, pathologic criteria and prognostic implications. Cancer 56:1106–1111CrossRefPubMedGoogle Scholar
  3. 3.
    Capper D, Weißert S, Balss J et al (2010) Characterization of R132H mutation specific IDH1 antibody binding in brain tumors. Brain Pathol 20:245–254CrossRefPubMedGoogle Scholar
  4. 4.
    Capper D, Zentgraf H, Balss J et al (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601CrossRefPubMedGoogle Scholar
  5. 5.
    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744CrossRefPubMedGoogle Scholar
  6. 6.
    Gravendeel LA, Kloosterhof NK, Bralten LB et al (2010) Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat 31:E1186–E1199CrossRefPubMedGoogle Scholar
  7. 7.
    Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMedGoogle Scholar
  8. 8.
    Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMedGoogle Scholar
  9. 9.
    Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but are rare in primary glioblastomas. Neuro Oncol 11:341–347CrossRefPubMedGoogle Scholar
  10. 10.
    Kraus JA, Koopmann J, Kaskel P et al (1995) Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol 54:91–95CrossRefPubMedGoogle Scholar
  11. 11.
    Louis D, Ohgak H, Wiestler O et al (eds) (2007) World health organization classification of tumours of the central nervous system, 4 edn. In: Bosman F, Jaffe E, Lakhani S et al (eds) World health organization classification of tumours. IARC, LyonGoogle Scholar
  12. 12.
    Miller CR, Dunham CP, Scheithauer BW et al (2006) Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol 24:5419–5426CrossRefPubMedGoogle Scholar
  13. 13.
    Nobusawa S, Watanabe T, Kleihues P et al (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007CrossRefPubMedGoogle Scholar
  14. 14.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefPubMedGoogle Scholar
  15. 15.
    Riemenschneider MJ, Jeuken JW, Wesseling P et al (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120:567–584CrossRefPubMedGoogle Scholar
  16. 16.
    Scheithauer BW, Fuller GN, VandenBerg SR (2008) The 2007 WHO classification of tumors of the nervous system: controversies in surgical neuropathology. Brain Pathol 18:307–316CrossRefPubMedGoogle Scholar
  17. 17.
    Sonoda Y, Kumabe T, Nakamura T et al (2009) Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci 100:1996–1998CrossRefPubMedGoogle Scholar
  18. 18.
    Toedt G, Barbus S, Wolter M et al (2010) Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer (epub ahead of print)Google Scholar
  19. 19.
    van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304CrossRefPubMedGoogle Scholar
  20. 20.
    van den Bent MJ, Dubbink HJ, Marie Y et al (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16:1597–1604CrossRefPubMedGoogle Scholar
  21. 21.
    Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234Google Scholar
  22. 22.
    Watanabe T, Nobusawa S, Kleihues P et al (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:653–656Google Scholar
  23. 23.
    Weller M, Felsberg J, Hartmann C et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27:5743–5750CrossRefPubMedGoogle Scholar
  24. 24.
    Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51CrossRefPubMedGoogle Scholar
  25. 25.
    Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880CrossRefPubMedGoogle Scholar
  26. 26.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christian Hartmann
    • 1
    • 2
  • Bettina Hentschel
    • 3
  • Wolfgang Wick
    • 2
    • 4
  • David Capper
    • 1
  • Jörg Felsberg
    • 5
  • Matthias Simon
    • 6
  • Manfred Westphal
    • 7
  • Gabriele Schackert
    • 8
  • Richard Meyermann
    • 9
  • Torsten Pietsch
    • 10
  • Guido Reifenberger
    • 5
  • Michael Weller
    • 11
  • Markus Loeffler
    • 3
  • Andreas von Deimling
    • 1
    • 2
  1. 1.Department of Neuropathology, Institute of PathologyRuprecht-Karls-University HeidelbergHeidelbergGermany
  2. 2.Clinical Cooperation Unit NeuropathologyGerman Cancer Research CenterHeidelbergGermany
  3. 3.Institute for Medical Informatics, Statistics and EpidemiologyUniversität LeipzigLeipzigGermany
  4. 4.Department of Neurooncology, NeurologyRuprecht-Karls-University HeidelbergHeidelbergGermany
  5. 5.Department of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
  6. 6.Department of NeurosurgeryUniversity of BonnBonnGermany
  7. 7.Department of NeurosurgeryUniversity Hamburg-EppendorfHamburgGermany
  8. 8.Department of NeurosurgeryUniversity DresdenDresdenGermany
  9. 9.Brain Research InstituteEberhard Karls-University TübingenTübingenGermany
  10. 10.Department of NeuropathologyUniversity of BonnBonnGermany
  11. 11.Department of NeurologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations