Advertisement

Acta Neuropathologica

, Volume 121, Issue 2, pp 253–266 | Cite as

Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies

  • Anne Toussaint
  • Belinda Simone Cowling
  • Karim Hnia
  • Michel Mohr
  • Anders Oldfors
  • Yannick Schwab
  • Uluc Yis
  • Thierry Maisonobe
  • Tanya Stojkovic
  • Carina Wallgren-Pettersson
  • Vincent Laugel
  • Andoni Echaniz-Laguna
  • Jean-Louis Mandel
  • Ichizo Nishino
  • Jocelyn Laporte
Original Paper

Abstract

Myotubular myopathy and centronuclear myopathies (CNM) are congenital myopathies characterized by generalized muscle weakness and mislocalization of muscle fiber nuclei. Genetically distinct forms exist, and mutations in BIN1 were recently identified in autosomal recessive cases (ARCNM). Amphiphysins have been implicated in membrane remodeling in brain and skeletal muscle. Our objective was to decipher the pathogenetic mechanisms underlying different forms of CNM, with a focus on ARCNM cases. In this study, we compare the histopathological features from patients with X-linked, autosomal recessive, and dominant forms, respectively, mutated in myotubularin (MTM1), amphiphysin 2 (BIN1), and dynamin 2 (DNM2). We further characterize the ultrastructural defects in ARCNM muscles. We demonstrate that the two BIN1 isoforms expressed in skeletal muscle possess the phosphoinositide-binding domain and are specifically targeted to the triads close to the DHPR–RYR1 complex. Cardiac isoforms do not contain this domain, suggesting that splicing of BIN1 regulates its specific function in skeletal muscle. Immunofluorescence analyses of muscles from patients with BIN1 mutations reveal aberrations of BIN1 localization and triad organization. These defects are also observed in X-linked and autosomal dominant forms of CNM and in Mtm1 knockout mice. In addition to previously reported implications of BIN1 in cancer as a tumor suppressor, these findings sustain an important role for BIN1 skeletal muscle isoforms in membrane remodeling and organization of the excitation–contraction machinery. We propose that aberrant BIN1 localization and defects in triad structure are part of a common pathogenetic mechanism shared between the three forms of centronuclear myopathies.

Keywords

Congenital myopathy Centronuclear myopathy Myotubular myopathy Amphiphysin Myotubularin Dynamin Triad T-tubule 

Abbreviations

ADCNM

Autosomal dominant centronuclear myopathy

ARCNM

Autosomal recessive centronuclear myopathy

BAR

Bin/Amphiphysin/Rvs167

CNM

Centronuclear myopathy

KO

Knockout

NADH-TR

Nicotinamide adenine dinucleotide tetrazolium reductase

OMIM

Online mendelian inheritance in man

PIs

Phosphoinositides

SR

Sarcoplasmic reticulum

XLMTM

X-linked myotubular myopathy

Notes

Acknowledgments

We thank Christine Kretz and the IGBMC imaging center for technical assistance. This work was supported by grants from Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Collège de France, Association Française contre les Myopathies (AFM), Fondation Recherche Médicale (FRM DEQ20071210538), Agence Nationale de la Recherche (ANR-06-MRAR 023, ANR-07-BLAN-0065-03, ANR-08-GENOPAT-005), and the E-rare program.

References

  1. 1.
    Al-Qusairi L, Weiss N, Toussaint A et al (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA 106:18763–18768CrossRefPubMedGoogle Scholar
  2. 2.
    Bevilacqua JA, Bitoun M, Biancalana V et al (2009) “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol 117:283–291CrossRefPubMedGoogle Scholar
  3. 3.
    Bitoun M, Bevilacqua JA, Prudhon B et al (2007) Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 62:666–670CrossRefPubMedGoogle Scholar
  4. 4.
    Bitoun M, Maugenre S, Jeannet PY et al (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209CrossRefPubMedGoogle Scholar
  5. 5.
    Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223–2229PubMedGoogle Scholar
  6. 6.
    Buj-Bello A, Laugel V, Messaddeq N et al (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci USA 99:15060–15065CrossRefPubMedGoogle Scholar
  7. 7.
    Butler MH, David C, Ochoa GC et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367CrossRefPubMedGoogle Scholar
  8. 8.
    Carson FL (1997) Histotechnology. ASCP press, ChicagoGoogle Scholar
  9. 9.
    Claeys KG, Maisonobe T, Bohm J et al (2010) Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology 74:519–521CrossRefPubMedGoogle Scholar
  10. 10.
    Denic V, Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130:663–677CrossRefPubMedGoogle Scholar
  11. 11.
    Dowling JJ, Vreede AP, Low SE et al (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372CrossRefPubMedGoogle Scholar
  12. 12.
    Elliott K, Sakamuro D, Basu A et al (1999) Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 18:3564–3573CrossRefPubMedGoogle Scholar
  13. 13.
    Engel AG, Franzini-Armstrong C (2004) Myology, basic and clinical. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Fernando P, Sandoz JS, Ding W et al (2009) Bin1 SRC homology 3 domain acts as a scaffold for myofiber sarcomere assembly. J Biol Chem 284:27674–27686CrossRefPubMedGoogle Scholar
  15. 15.
    Flucher BE, Andrews SB, Daniels MP (1994) Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle. Mol Biol Cell 5:1105–1118PubMedGoogle Scholar
  16. 16.
    Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196CrossRefPubMedGoogle Scholar
  17. 17.
    Hong TT, Smyth JW, Gao D et al (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312CrossRefPubMedGoogle Scholar
  18. 18.
    Jeannet PY, Bassez G, Eymard B et al (2004) Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 62:1484–1490PubMedGoogle Scholar
  19. 19.
    Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129CrossRefPubMedGoogle Scholar
  20. 20.
    Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26CrossRefPubMedGoogle Scholar
  21. 21.
    Kojima C, Hashimoto A, Yabuta I et al (2004) Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J 23:4413–4422CrossRefPubMedGoogle Scholar
  22. 22.
    Laporte J, Biancalana V, Tanner SM et al (2000) MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 15:393–409CrossRefPubMedGoogle Scholar
  23. 23.
    Laporte J, Hu LJ, Kretz C et al (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182CrossRefPubMedGoogle Scholar
  24. 24.
    Lee E, Marcucci M, Daniell L et al (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196CrossRefPubMedGoogle Scholar
  25. 25.
    Leprince C, Romero F, Cussac D et al (1997) A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J Biol Chem 272:15101–15105CrossRefPubMedGoogle Scholar
  26. 26.
    Luna LG (1992) Histopathological methods and color atlas of special stains and tissue artifacts. Johnson Printers, Downers GroveGoogle Scholar
  27. 27.
    McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596CrossRefPubMedGoogle Scholar
  28. 28.
    Muller AJ, Baker JF, DuHadaway JB et al (2003) Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol 23:4295–4306CrossRefPubMedGoogle Scholar
  29. 29.
    Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2004) Targeted deletion of the suppressor gene bin1/amphiphysin2 accentuates the neoplastic character of transformed mouse fibroblasts. Cancer Biol Ther 3:1236–1242CrossRefPubMedGoogle Scholar
  30. 30.
    Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9:1240–1249CrossRefPubMedGoogle Scholar
  31. 31.
    Nicot AS, Toussaint A, Tosch V et al (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139CrossRefPubMedGoogle Scholar
  32. 32.
    North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18:433–442CrossRefPubMedGoogle Scholar
  33. 33.
    Pelé M, Tiret L, Kessler JL, Blot S, Panthier JJ (2005) SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet 14:1417–1427CrossRefPubMedGoogle Scholar
  34. 34.
    Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH (2005) X-linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol 64:555–564PubMedGoogle Scholar
  35. 35.
    Prendergast GCMAJ, Ramalingam A, Chang MY (2009) Bar the door: cancer suppression by amphiphysin-like genes. Biochem Biophys Acta 1795:25–36PubMedGoogle Scholar
  36. 36.
    Ramjaun AR, McPherson PS (1998) Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. J Neurochem 70:2369–2376CrossRefPubMedGoogle Scholar
  37. 37.
    Razzaq A, Robinson IM, McMahon HT et al (2001) Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev 15:2967–2979CrossRefPubMedGoogle Scholar
  38. 38.
    Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL (2006) The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 70:37–120CrossRefPubMedGoogle Scholar
  39. 39.
    Rezniczek GA, Konieczny P, Nikolic B et al (2007) Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol 176:965–977CrossRefPubMedGoogle Scholar
  40. 40.
    Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromuscul Disord 20:223–228CrossRefPubMedGoogle Scholar
  41. 41.
    Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77CrossRefPubMedGoogle Scholar
  42. 42.
    Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor GS, Maehama T, Dixon JE (2000) Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci USA 97:8910–8915CrossRefPubMedGoogle Scholar
  44. 44.
    Tiret L, Blot S, Kessler JL, Gaillot H, Breen M, Panthier JJ (2003) The cnm locus, a canine homologue of human autosomal forms of centronuclear myopathy, maps to chromosome 2. Hum Genet 113:297–306CrossRefPubMedGoogle Scholar
  45. 45.
    Tosch V, Vasli N, Kretz C et al (2010) Novel molecular diagnostic approaches for X-linked centronuclear (myotubular) myopathy reveal intronic mutations. Neuromuscul Disord 20:375–381CrossRefPubMedGoogle Scholar
  46. 46.
    Tronchere H, Laporte J, Pendaries C et al (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312CrossRefPubMedGoogle Scholar
  47. 47.
    Tsai TC, Horinouchi H, Noguchi S et al (2005) Characterization of MTM1 mutations in 31 Japanese families with myotubular myopathy, including a patient carrying 240 kb deletion in Xq28 without male hypogenitalism. Neuromuscul Disord 15:245–252CrossRefPubMedGoogle Scholar
  48. 48.
    Unsworth KE, Mazurkiewicz P, Senf F et al (2007) Dynamin is required for F-actin assembly and pedestal formation by enteropathogenic Escherichia coli (EPEC). Cell Microbiol 9:438–449CrossRefPubMedGoogle Scholar
  49. 49.
    Wechsler-Reya RJ, Elliott KJ, Prendergast GC (1998) A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Mol Cell Biol 18:566–575PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anne Toussaint
    • 1
    • 2
    • 3
    • 4
    • 5
  • Belinda Simone Cowling
    • 1
    • 2
    • 3
    • 4
    • 5
  • Karim Hnia
    • 1
    • 2
    • 3
    • 4
    • 5
  • Michel Mohr
    • 6
  • Anders Oldfors
    • 7
  • Yannick Schwab
    • 2
    • 3
    • 8
  • Uluc Yis
    • 9
  • Thierry Maisonobe
    • 10
    • 11
  • Tanya Stojkovic
    • 12
    • 13
  • Carina Wallgren-Pettersson
    • 14
    • 15
  • Vincent Laugel
    • 16
  • Andoni Echaniz-Laguna
    • 17
  • Jean-Louis Mandel
    • 1
    • 2
    • 3
    • 4
    • 5
  • Ichizo Nishino
    • 18
  • Jocelyn Laporte
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Neurobiology and GeneticsInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
  2. 2.INSERM, U964IllkirchFrance
  3. 3.CNRS, UMR7104IllkirchFrance
  4. 4.Université de StrasbourgIllkirchFrance
  5. 5.Chaire de Génétique HumaineCollège de FranceIllkirchFrance
  6. 6.Service d’Anatomie PathologiqueCentre Hospitalier Universitaire (CHU) HautepierreStrasbourgFrance
  7. 7.Department of Pathology, Institute of BiomedicineUniversity of GothenburgGothenburgSweden
  8. 8.Imaging PlatformInstitut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
  9. 9.Division of Child NeurologyGaziantep Children’s HospitalGaziantepTurkey
  10. 10.Service de NeuropathologieGroupe Hospitalier Pitié-Salpêtrière, AP-HPParisFrance
  11. 11.Fédération de Neurophysiologie CliniqueGroupe Hospitalier Pitié-Salpêtrière, AP-HPParisFrance
  12. 12.Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HPParisFrance
  13. 13.Centre de Référence Neuromusculaire Paris-EstInstitut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, AP-HPParisFrance
  14. 14.Department Medical Genetics, The Haartman InstituteUniversity of HelsinkiHelsinkiFinland
  15. 15.The Folkhälsan Institute of GeneticsHelsinkiFinland
  16. 16.Service de PédiatrieCentre Hospitalier Universitaire (CHU) HautepierreStrasbourgFrance
  17. 17.Department of NeurologyHôpital CivilStrasbourgFrance
  18. 18.Department of Neuromuscular ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan

Personalised recommendations