Acta Neuropathologica

, Volume 121, Issue 1, pp 135–143 | Cite as

The application of in vitro cell-free conversion systems to human prion diseases

  • Michael Jones
  • Alexander H. Peden
  • Mark W. Head
  • James W. Ironside
Review

Abstract

A key event in the pathogenesis of prion diseases is the conversion of the normal cellular isoform of the prion protein into the disease-associated isoform, but the mechanisms operating in this critical event are not yet fully understood. A number of novel approaches have recently been developed to study factors influencing this process. One of these, the protein misfolding cyclical amplification (PMCA) technique, has been used to explore defined factors influencing the conversion of cellular prion protein in a cell-free model system. Although initially developed in animal models, this technique has been increasingly applied to human prion diseases. Recent studies have focused on the role of different isoforms of the disease-associated human prion protein and the effects of the naturally occurring polymorphism at codon 129 in the human prion protein gene on the conversion process, improving our understanding of the interaction between host and agent factors that influence the wide range of phenotypes in human prion diseases. This technique also allows a greatly enhanced sensitivity of detection of disease-associated prion protein in human tissues and fluids, which is potentially applicable to disease screening, particularly for variant Creutzfeldt–Jakob disease. The PMCA technique can also be used to model human susceptibility to a range of prions of non-human origin, which is likely to prove of considerable future interest as more novel and potentially pathogenic prion diseases are identified in animal species that form part of the human food chain.

Keywords

PMCA CJD vCJD Prion protein gene PrPC PrPSc 

References

  1. 1.
    Aguzzi A, Klein MA, Musahl C et al (1998) Use of brain grafts to study the pathogenesis of prion diseases. Essays Biochem 33:133–147PubMedGoogle Scholar
  2. 2.
    Aguzzi A, Sigurdson C, Heikenwalder M (2007) Molecular mechanisms of prion pathogenesis. Annu Rev PatholGoogle Scholar
  3. 3.
    Asano M, Mohri S, Ironside JW et al (2006) vCJD prion acquires altered virulence through trans-species infection. Biochem Biophys Res Commun 342:293–299CrossRefPubMedGoogle Scholar
  4. 4.
    Atarashi R, Moore RA, Sim VL et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650CrossRefPubMedGoogle Scholar
  5. 5.
    Atarashi R, Wilham JM, Christensen L et al (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5:211–212CrossRefPubMedGoogle Scholar
  6. 6.
    Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C (2009) De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog 5:e1000421CrossRefPubMedGoogle Scholar
  7. 7.
    Bessen RA, Kocisko DA, Raymond GJ et al (1995) Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700CrossRefPubMedGoogle Scholar
  8. 8.
    Bieschke J, Weber P, Sarafoff N et al (2004) Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci USA 101:12207–12211CrossRefPubMedGoogle Scholar
  9. 9.
    Bishop MT, Hart P, Aitchison L et al (2006) Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol 5:393–398CrossRefPubMedGoogle Scholar
  10. 10.
    Bossers A, Belt PBGM, Raymond GJ et al (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci USA 94:4931–4936CrossRefPubMedGoogle Scholar
  11. 11.
    Bossers A, de Vries R, Smits MA (2000) Susceptibility of sheep for scrapie as assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol 74:1407–1414CrossRefPubMedGoogle Scholar
  12. 12.
    Brandner S, Isenmann S, Raeber A et al (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343CrossRefPubMedGoogle Scholar
  13. 13.
    Brandner S, Raeber A, Sailer A et al (1996) Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA 93:13148–13151CrossRefPubMedGoogle Scholar
  14. 14.
    Bruce ME, Will RG, Ironside JW et al (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501CrossRefPubMedGoogle Scholar
  15. 15.
    Budka H, Head MW, Ironside JW et al (2003) Sporadic Creutzfeldt–Jakob disease. In: Dickson DW et al (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 287–297Google Scholar
  16. 16.
    Buschmann A, Gretzschel A, Biacabe AG et al (2006) Atypical BSE in Germany—proof of transmissibility and biochemical characterization. Vet Microbiol 117:103–116CrossRefPubMedGoogle Scholar
  17. 17.
    Cali I, Castellani R, Alshekhlee A et al (2009) Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt–Jakob disease: its effect on the phenotype and prion-type characteristics. Brain 132:2643–2658CrossRefPubMedGoogle Scholar
  18. 18.
    Castilla J, Morales R, Saa P et al (2008) Cell-free propagation of prion strains. EMBO J 27:2557–2566CrossRefPubMedGoogle Scholar
  19. 19.
    Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206CrossRefPubMedGoogle Scholar
  20. 20.
    Castilla J, Saa P, Morales R et al (2006) Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol 412:3–21CrossRefPubMedGoogle Scholar
  21. 21.
    Castilla J, Saa P, Soto C (2005) Detection of prions in blood. Nat Med 11:982–985PubMedGoogle Scholar
  22. 22.
    Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443:803–810CrossRefPubMedGoogle Scholar
  23. 23.
    Caughey B, Horiuchi M, Demaimay R, Raymond GJ (1999) Assays of protease-resistant prion protein and its formation. Methods Enzymol 309:122–133CrossRefPubMedGoogle Scholar
  24. 24.
    Caughey B, Kocisko DA, Raymond GJ, Lansbury PT Jr (1995) Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem Biol 2:807–817CrossRefPubMedGoogle Scholar
  25. 25.
    Caughey B, Raymond GJ, Kocisko DA, Lansbury PT Jr (1997) Scrapie infectivity correlates with converting activity, protease resistance, and aggregation of scrapie-associated prion protein in guanidine denaturation studies. J Virol 71:4107–4110PubMedGoogle Scholar
  26. 26.
    Caughey WS, Raymond LD, Horiuchi M, Caughey B (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 95:12117–12122CrossRefPubMedGoogle Scholar
  27. 27.
    Chabry J, Caughey B, Chesebro B (1998) Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem 273:13203–13207CrossRefPubMedGoogle Scholar
  28. 28.
    Chabry J, Priola SA, Wehrly K et al (1999) Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence. J Virol 73:6245–6250PubMedGoogle Scholar
  29. 29.
    Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34:287–295CrossRefPubMedGoogle Scholar
  30. 30.
    Chen PY, Lin CC, Chang YT, Lin SC, Chan SI (2002) One O-linked sugar can affect the coil-to-beta structural transition of the prion peptide. Proc Natl Acad Sci USA 99:12633–12638CrossRefPubMedGoogle Scholar
  31. 31.
    Colby DW, Giles K, Legname G et al (2009) Design and construction of diverse mammalian prion strains. Proc Natl Acad Sci USA 106:20417–20422CrossRefPubMedGoogle Scholar
  32. 32.
    Colby DW, Zhang Q, Wang S et al (2007) Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 104:20914–20919CrossRefPubMedGoogle Scholar
  33. 33.
    Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936CrossRefPubMedGoogle Scholar
  34. 34.
    DebBurman SK, Raymond GJ, Caughey B, Lindquist S (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci USA 94:13938–13943CrossRefPubMedGoogle Scholar
  35. 35.
    Deleault NR, Harris BT, Rees JR, Supattapone S (2007) From the cover: formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA 104:9741–9746CrossRefPubMedGoogle Scholar
  36. 36.
    Demaimay R, Harper J, Gordon H et al (1998) Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem 71:2534–2541CrossRefPubMedGoogle Scholar
  37. 37.
    Eiden M, Palm GJ, Hinrichs W et al (2006) Synergistic and strain-specific effects of bovine spongiform encephalopathy and scrapie prions in the cell-free conversion of recombinant prion protein. J Gen Virol 87:3753–3761CrossRefPubMedGoogle Scholar
  38. 38.
    Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239CrossRefPubMedGoogle Scholar
  39. 39.
    Green KM, Castilla J, Seward TS et al (2008) Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 4:e1000139PubMedGoogle Scholar
  40. 40.
    Head MW, Bunn TJ, Bishop MT et al (2004) Prion protein heterogeneity in sporadic but not variant Creutzfeldt–Jakob disease: UK cases 1991–2002. Ann Neurol 55:851–859CrossRefPubMedGoogle Scholar
  41. 41.
    Herrmann LM, Caughey B (1998) The importance of the disulfide bond in prion protein conversion. Neuroreport 9:2457–2461CrossRefPubMedGoogle Scholar
  42. 42.
    Hill AF, Antoniou M, Collinge J (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80(Pt 1):11–14PubMedGoogle Scholar
  43. 43.
    Horiuchi M, Priola SA, Chabry J, Caughey B (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci USA 97:5836–5841CrossRefPubMedGoogle Scholar
  44. 44.
    Iniguez V, McKenzie D, Mirwald J, Aiken J (2000) Strain-specific propagation of PrP(Sc) properties into baculovirus-expressed hamster PrP(C). J Gen Virol 81:2565–2571PubMedGoogle Scholar
  45. 45.
    Ironside JW, Bishop MT, Connolly K et al (2006) Variant Creutzfeldt–Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. Br Med J 332:1186–1188CrossRefGoogle Scholar
  46. 46.
    Ironside JW, Ghetti B, Head MW, Piccardo P, Will RG (2008) Prion diseases. In: Love S, Louis DN, Ellison DW (eds) Hodder and Arnold, pp 1197–1273Google Scholar
  47. 47.
    Ironside JW, Ritchie DL, Head MW (2005) Phenotypic variability in human prion diseases. Neuropathol Appl Neurobiol 31:565–579CrossRefPubMedGoogle Scholar
  48. 48.
    Jackson GS, Hosszu LL, Power A et al (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–1937CrossRefPubMedGoogle Scholar
  49. 49.
    Jones M, Peden A, Prowse C et al (2007) In vitro amplification and detection of variant Creutzfeldt–Jakob disease PrP(Sc). J Pathol 213:21–26CrossRefPubMedGoogle Scholar
  50. 50.
    Jones M, Peden AH, Wight D et al (2008) Effects of human PrPSc type and PRNP genotype in an in vitro conversion assay. Neuroreport 19:1783–1786CrossRefPubMedGoogle Scholar
  51. 51.
    Jones M, Peden AH, Yull H et al (2008) Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP) associated with variant Creutzfeldt–Jakob disease. Transfusion 49:376–384CrossRefPubMedGoogle Scholar
  52. 52.
    Jones M, Wight D, Barron R et al (2009) Molecular model of prion transmission to humans. Emerg Infect Dis 15:2013–2016CrossRefPubMedGoogle Scholar
  53. 53.
    Kaneko K, Ball HL, Wille H et al (2000) A synthetic peptide initiates Gerstmann–Straussler–Scheinker (GSS) disease in transgenic mice. J Mol Biol 295:997–1007CrossRefPubMedGoogle Scholar
  54. 54.
    Kaski D, Mead S, Hyare H et al (2009) Variant CJD in an individual heterozygous for PRNP codon 129. Lancet 374:2128CrossRefPubMedGoogle Scholar
  55. 55.
    Kim JI, Cali I, Surewicz K et al (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285:14083–14087CrossRefPubMedGoogle Scholar
  56. 56.
    Kirby L, Birkett CR, Rudyk H, Gilbert IH, Hope J (2003) In vitro cell-free conversion of bacterial recombinant PrP to PrPres as a model for conversion. J Gen Virol 84:1013–1020CrossRefPubMedGoogle Scholar
  57. 57.
    Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA 100:11666–11671CrossRefPubMedGoogle Scholar
  58. 58.
    Kocisko DA, Come JH, Priola SA et al (1994) Cell-free formation of protease-resistant prion protein. Nature 370:471–474CrossRefPubMedGoogle Scholar
  59. 59.
    Kocisko DA, Priola SA, Raymond GJ et al (1995) Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc Natl Acad Sci USA 92:3923–3927CrossRefPubMedGoogle Scholar
  60. 60.
    Kong Q, Zheng M, Casalone C et al (2008) Evaluation of the human transmission risk of an atypical bovine spongiform encephalopathy prion strain. J Virol 82:3697–3701CrossRefPubMedGoogle Scholar
  61. 61.
    Kuczius T, Koch R, Keyvani K et al (2007) Regional and phenotype heterogeneity of cellular prion proteins in the human brain. Eur J Neurosci 25:2649–2655CrossRefPubMedGoogle Scholar
  62. 62.
    Kurt TD, Perrott MR, Wilusz CJ et al (2007) Efficient in vitro amplification of chronic wasting disease PrPRES. J Virol 81:9605–9608CrossRefPubMedGoogle Scholar
  63. 63.
    Legname G, Baskakov IV, Nguyen HO et al (2004) Synthetic mammalian prions. Science 305:673–676CrossRefPubMedGoogle Scholar
  64. 64.
    Makarava N, Baskakov IV (2008) The same primary structure of the prion protein yields two distinct self-propagating states. J Biol Chem 283:15988–15996CrossRefPubMedGoogle Scholar
  65. 65.
    Makarava N, Kovacs GG, Bocharova O et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119:177–187CrossRefPubMedGoogle Scholar
  66. 66.
    Makarava N, Ostapchenko VG, Savtchenko R, Baskakov IV (2009) Conformational switching within individual amyloid fibrils. J Biol Chem 284:14386–14395CrossRefPubMedGoogle Scholar
  67. 67.
    Mallucci G, Dickinson A, Linehan J et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874CrossRefPubMedGoogle Scholar
  68. 68.
    Mallucci GR, White MD, Farmer M et al (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335CrossRefPubMedGoogle Scholar
  69. 69.
    Manson JC, Cancellotti E, Hart P, Bishop MT, Barron RM (2006) The transmissible spongiform encephalopathies: emerging and declining epidemics. Biochem Soc Trans 34:1155–1158CrossRefPubMedGoogle Scholar
  70. 70.
    Mays CE, Titlow W, Seward T, Telling GC, Ryou C (2009) Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem Biophys Res Commun 388:306–310CrossRefPubMedGoogle Scholar
  71. 71.
    Murayama Y, Yoshioka M, Okada H et al (2007) Urinary excretion and blood level of prions in scrapie-infected hamsters. J Gen Virol 88:2890–2898CrossRefPubMedGoogle Scholar
  72. 72.
    Nandi PK, Leclerc E, Nicole JC, Takahashi M (2002) DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid. J Mol Biol 322:153–161CrossRefPubMedGoogle Scholar
  73. 73.
    Nishina KA, Deleault NR, Mahal SP et al (2006) The stoichiometry of host PrPC glycoforms modulates the efficiency of PrPSc formation in vitro. Biochemistry 45:14129–14139CrossRefPubMedGoogle Scholar
  74. 74.
    Orru CD, Wilham JM, Hughson AG et al (2009) Human variant Creutzfeldt–Jakob disease and sheep scrapie PrP(res) detection using seeded conversion of recombinant prion protein. Protein Eng Des Sel 22:515–521CrossRefPubMedGoogle Scholar
  75. 75.
    Parchi P, Giese A, Capellari S et al (1999) Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233CrossRefPubMedGoogle Scholar
  76. 76.
    Peden A, McCardle L, Head MW et al. (2010) Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. HaemophiliaGoogle Scholar
  77. 77.
    Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364:527–529CrossRefPubMedGoogle Scholar
  78. 78.
    Post K, Pitschke M, Schafer O et al (1998) Rapid acquisition of beta-sheet structure in the prion protein prior to multimer formation. Biol Chem 379:1307–1317CrossRefPubMedGoogle Scholar
  79. 79.
    Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J 20:6692–6699CrossRefPubMedGoogle Scholar
  80. 80.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383CrossRefPubMedGoogle Scholar
  81. 81.
    Qin K, Yang DS, Yang Y et al (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275:19121–19131CrossRefPubMedGoogle Scholar
  82. 82.
    Raymond GJ, Hope J, Kocisko DA et al (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388:285–288CrossRefPubMedGoogle Scholar
  83. 83.
    Saa P, Castilla J, Soto C (2006) Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J Biol Chem 281:35245–35252CrossRefPubMedGoogle Scholar
  84. 84.
    Saborio GP, Permanne B, Soto C (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411:810–813CrossRefPubMedGoogle Scholar
  85. 85.
    Saborio GP, Soto C, Kascsak RJ et al (1999) Cell-lysate conversion of prion protein into its protease-resistant isoform suggests the participation of a cellular chaperone. Biochem Biophys Res Commun 258:470–475CrossRefPubMedGoogle Scholar
  86. 86.
    Sarafoff NI, Bieschke J, Giese A et al (2005) Automated PrPres amplification using indirect sonication. J Biochem Biophys Methods 63:213–221CrossRefPubMedGoogle Scholar
  87. 87.
    Sigurdson CJ, Nilsson KP, Hornemann S et al (2009) De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proc Natl Acad Sci USA 106:304–309CrossRefPubMedGoogle Scholar
  88. 88.
    Soto C, Anderes L, Suardi S et al (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579:638–642CrossRefPubMedGoogle Scholar
  89. 89.
    Tattum MH, Jones S, Pal S, Collinge J, Jackson GS (2010) Discrimination between prion-infected and normal blood samples by protein misfolding cyclic amplification. Transfusion 50:996–1002CrossRefPubMedGoogle Scholar
  90. 90.
    Thorne L, Terry LA (2008) In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie. J Gen Virol 89:3177–3184CrossRefPubMedGoogle Scholar
  91. 91.
    Uro-Coste E, Cassard H, Simon S et al (2008) Beyond PrP res type 1/type 2 dichotomy in Creutzfeldt–Jakob disease. PLoS Pathog 4:e1000029CrossRefGoogle Scholar
  92. 92.
    Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135CrossRefPubMedGoogle Scholar
  93. 93.
    Webb PR, Powell L, Denyer M et al (2009) A retrospective immunohistochemical study reveals atypical scrapie has existed in the United Kingdom since at least 1987. J Vet Diagn Invest 21:826–829PubMedGoogle Scholar
  94. 94.
    Weissmann C, Bueler H, Fischer M, Sauer A, Aguet M (1994) Susceptibility to scrapie in mice is dependent on PrPC. Philos Trans R Soc Lond B Biol Sci 343:431–433CrossRefPubMedGoogle Scholar
  95. 95.
    Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrP(C)): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644PubMedGoogle Scholar
  96. 96.
    White MD, Farmer M, Mirabile I et al (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243CrossRefPubMedGoogle Scholar
  97. 97.
    Will RG, Ironside JW, Zeidler M et al (1996) A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347:921–925CrossRefPubMedGoogle Scholar
  98. 98.
    Xiong LW, Raymond LD, Hayes SF, Raymond GJ, Caughey B (2001) Conformational change, aggregation and fibril formation induced by detergent treatments of cellular prion protein. J Neurochem 79:669–678CrossRefPubMedGoogle Scholar
  99. 99.
    Zou WQ, Cashman NR (2002) Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem 277:43942–43947CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michael Jones
    • 2
  • Alexander H. Peden
    • 1
  • Mark W. Head
    • 1
  • James W. Ironside
    • 1
  1. 1.National Creutzfeldt–Jakob Disease Surveillance Unit, School of Molecular and Clinical MedicineUniversity of Edinburgh Western General HospitalEdinburghUK
  2. 2.Components and vCJD Research, National Science LaboratoriesScottish National Blood Transfusion ServiceEdinburghUK

Personalised recommendations