Acta Neuropathologica

, Volume 119, Issue 6, pp 657–667 | Cite as

Papp–Lantos inclusions and the pathogenesis of multiple system atrophy: an update

  • Kurt A. JellingerEmail author
  • Peter L. Lantos


Multiple systemic atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder of undetermined aetiology characterized by a distinctive oligodendrogliopathy with argyrophilic glial cytoplasmic inclusions (GCIs) and selective neurodegeneration. GCIs or Papp–Lantos inclusions, described more than 20 years ago, are now accepted as the hallmarks for the definite neuropathological diagnosis of MSA and suggested to play a central role in the pathogenesis of this disorder. GCIs are composed of hyperphosphorylated α-synuclein (αSyn), ubiquitin, LRRK2 (leucin-rich repeat serine/threonine-protein) and many other proteins, suggesting that MSA represents an invariable synucleinopathy of non-neuronal type, a specific form of proteinopathies. The origin of αSyn deposition in GCIs is not yet fully understood, but recent findings of dysregulation in the metabolism of myelin basic protein (MBP) and p25α, a central nervous system-specific protein, also called TPPP (tubulin polymerization promoting protein), strengthened the working model of MSA as a primary glial disorder and may explain frequent alterations of myelin in MSA. However, it is unknown whether these changes represent an early event or myelin dysregulation occurs further downstream in MSA pathogenesis. The association between polymorphisms at the SNCA gene locus and the risk for developing MSA also points to a primary role of αSyn in its pathogenesis, while in a MBP promoter-driven αSyn transgenic mouse model gliosis accompanied the neurodegenerative process originating in oligodendrocytes. Because αSyn represents a major component in both oligodendroglial and neuronal inclusions in MSA, some authors suggested both a primary oligodendrogliopathy and a neuronal synucleinopathy, but current biomolecular data and animal models support a crucial role of the Papp–Lantos inclusions and of aberrant αSyn accumulation as their main constituent, causing oligodendroglial pathology, myelin disruption and, finally, neuronal degeneration in MSA. The relationship between oligodendrocytes involved by Papp–Lantos inclusions and those in degenerating neurons in the course of MSA needs further elucidation.


Multiple system atrophy Papp–Lantos inclusions Aberrant α-synuclein Glial cytoplasmic inclusions Oligodendrogliopathy Pathogenesis 



The authors thank Mr. E. Mitter-Ferstl, PhD, for secretarial and computer work. The work was partially supported by the Society for the Promotion of Research in Experimental Neurology, Vienna, Austria.


  1. 1.
    Abe H, Yagishita S, Amano N, Iwabuchi K, Hasegawa K, Kowa K (1992) Argyrophilic glial intracytoplasmic inclusions in multiple system atrophy: immunocytochemical and ultrastructural study. Acta Neuropathol 84:273–277PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Chalabi A, Durr A, Wood NW, Parkinson MH, Camuzat A, Hulot JS, Morrison KE, Renton A, Sussmuth SD, Landwehrmeyer BG, Ludolph A, Agid Y, Brice A, Leigh PN, Bensimon G (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 4:e7114. doi: 7110.1371/journal.pone.0007114 PubMedCrossRefGoogle Scholar
  3. 3.
    Alegre-Abarrategui J, Ansorge O, Esiri M, Wade-Martins R (2008) LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson’s disease. Neuropathol Appl Neurobiol 34:272–283PubMedCrossRefGoogle Scholar
  4. 4.
    Alim MA, Hossain MS, Arima K, Takeda K, Izumiyama Y, Nakamura M, Kaji H, Shinoda T, Hisanaga S, Ueda K (2002) Tubulin seeds alpha-synuclein fibril formation. J Biol Chem 277:2112–2117PubMedCrossRefGoogle Scholar
  5. 5.
    Alim MA, Ma QL, Takeda K, Aizawa T, Matsubara M, Nakamura M, Asada A, Saito T, Kaji H, Yoshii M, Hisanaga S, Ueda K (2004) Demonstration of a role for alpha-synuclein as a functional microtubule-associated protein. J Alzheimers Dis 6:435–442 (discussion 443–439)PubMedGoogle Scholar
  6. 6.
    Arai N, Nishimura M, Oda M, Morimatsu Y, Ohe R, Nagatomo H (1992) Immunohistochemical expression of microtubule-associated protein 5 (MAP5) in glial cells in multiple system atrophy. J Neurol Sci 109:102–106PubMedCrossRefGoogle Scholar
  7. 7.
    Arima K, Murayama S, Mukoyama M, Inose T (1992) Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. 1. Neuronal cytoplasmic inclusions. Acta Neuropathol 83:453–460PubMedCrossRefGoogle Scholar
  8. 8.
    Armstrong RA, Cairns NJ, Lantos PL (2006) Multiple system atrophy (MSA): topographic distribution of the alpha-synuclein-associated pathological changes. Parkinsonism Relat Disord 12:356–362PubMedCrossRefGoogle Scholar
  9. 9.
    Baker KG, Huang Y, McCann H, Gai WP, Jensen PH, Halliday GM (2006) P25alpha immunoreactive but alpha-synuclein immunonegative neuronal inclusions in multiple system atrophy. Acta Neuropathol 111:193–195PubMedCrossRefGoogle Scholar
  10. 10.
    Braak H, Rub U, Del Tredici K (2003) Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 29:60–76PubMedCrossRefGoogle Scholar
  11. 11.
    Brooks JA, Houlden H, Melchers A, Islam AJ, Ding J, Li A, Paudel R, Revesz T, Holton JL, Wood N, Lees A, Singleton AB, Scholz SW (2010) Mutational analysis of parkin and PINK1 in multiple system atrophy. Neurobiol Aging (in press). doi: 10.1016/j.neurobiolaging.2009.11.020
  12. 12.
    Burn DJ, Jaros E (2001) Multiple system atrophy: cellular and molecular pathology. Mol Pathol 54:419–426PubMedGoogle Scholar
  13. 13.
    Campbell BC, McLean CA, Culvenor JG, Gai WP, Blumbergs PC, Jakala P, Beyreuther K, Masters CL, Li QX (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96PubMedCrossRefGoogle Scholar
  14. 14.
    Croisier E, Graeber MB (2006) Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 112:517–530PubMedCrossRefGoogle Scholar
  15. 15.
    Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B (2009) Seeding induced by α-synuclein oligomers provides evidence for spreading of α-synuclein pathology. J Neurochem 111:192–203PubMedCrossRefGoogle Scholar
  16. 16.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015PubMedCrossRefGoogle Scholar
  17. 17.
    Dickson DW, Liu W, Hardy J, Farrer M, Mehta N, Uitti R, Mark M, Zimmerman T, Golbe L, Sage J, Sima A, D’Amato C, Albin R, Gilman S, Yen SH (1999) Widespread alterations of alpha-synuclein in multiple system atrophy. Am J Pathol 155:1241–1251PubMedGoogle Scholar
  18. 18.
    Duda JE, Giasson BI, Gur TL, Montine TJ, Robertson D, Biaggioni I, Hurtig HI, Stern MB, Gollomp SM, Grossman M, Lee VM, Trojanowski JQ (2000) Immunohistochemical and biochemical studies demonstrate a distinct profile of alpha-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol 59:830–841PubMedGoogle Scholar
  19. 19.
    Forman MS, Lee VM, Trojanowski JQ (2005) Nosology of Parkinson’s disease: looking for the way out of a quagmire. Neuron 47:479–482PubMedCrossRefGoogle Scholar
  20. 20.
    Fujishiro H, Ahn TB, Frigerio R, DelleDonne A, Josephs KA, Parisi JE, Eric Ahlskog J, Dickson DW (2008) Glial cytoplasmic inclusions in neurologically normal elderly: prodromal multiple system atrophy? Acta Neuropathol 116:269–275PubMedCrossRefGoogle Scholar
  21. 21.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164PubMedCrossRefGoogle Scholar
  22. 22.
    Gai WP, Power JH, Blumbergs PC, Culvenor JG, Jensen PH (1999) Alpha-synuclein immunoisolation of glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J Neurochem 73:2093–2100PubMedGoogle Scholar
  23. 23.
    Gai WP, Pountney DL, Power JH, Li QX, Culvenor JG, McLean CA, Jensen PH, Blumbergs PC (2003) Alpha-synuclein fibrils constitute the central core of oligodendroglial inclusion filaments in multiple system atrophy. Exp Neurol 181:68–78PubMedCrossRefGoogle Scholar
  24. 24.
    Gallyas F, Wolff JR (1986) Metal-catalyzed oxidation renders silver intensification selective. Applications for the histochemistry of diaminobenzidine and neurofibrillary changes. J Histochem Cytochem 34:1667–1672PubMedGoogle Scholar
  25. 25.
    Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59:449–458PubMedCrossRefGoogle Scholar
  26. 26.
    Geser F, Malunda J, Wenning GK, Lee VM, Trojanowski JQ (2009) Multiple system atrophy is not a TDP-43 proteinopathy. Mov Disord 24(Suppl 1):S426Google Scholar
  27. 27.
    Giasson BI, Mabon ME, Duda JE, Montine TJ, Robertson D, Hurtig HI, Lee VM, Trojanowski JQ (2003) Tau and 14-3-3 in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathol 106:243–250PubMedCrossRefGoogle Scholar
  28. 28.
    Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, Kaufmann H, Klockgether T, Lang AE, Lantos PL, Litvan I, Mathias CJ, Oliver E, Robertson D, Schatz I, Wenning GK (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98PubMedCrossRefGoogle Scholar
  29. 29.
    Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Durr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676PubMedCrossRefGoogle Scholar
  30. 30.
    Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 32:28–34PubMedCrossRefGoogle Scholar
  31. 31.
    Griffin SV, Hiromura K, Pippin J, Petermann AT, Blonski MJ, Krofft R, Takahashi S, Kulkarni AB, Shankland SJ (2004) Cyclin-dependent kinase 5 is a regulator of podocyte differentiation, proliferation, and morphology. Am J Pathol 165:1175–1185PubMedGoogle Scholar
  32. 32.
    Higashi S, Biskup S, West AB, Trinkaus D, Dawson VL, Faull RL, Waldvogel HJ, Arai H, Dawson TM, Moore DJ, Emson PC (2007) Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Res 1155:208–219PubMedCrossRefGoogle Scholar
  33. 33.
    Hlavanda E, Klement E, Kokai E, Kovacs J, Vincze O, Tokesi N, Orosz F, Medzihradszky KF, Dombradi V, Ovadi J (2007) Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): identification of sites targeted by different kinases. J Biol Chem 282:29531–29539PubMedCrossRefGoogle Scholar
  34. 34.
    Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VM, Ischiropoulos H (2004) Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279:47746–47753PubMedCrossRefGoogle Scholar
  35. 35.
    Honjo Y, Shirakashi Y, Kawamoto Y, Akiguchi I (2008) Anti-DARPP32 antibody-immunopositive inclusions in the brain of patients with multiple system atrophy. Clin Neuropathol 27:309–316PubMedGoogle Scholar
  36. 36.
    Huang Y, Song YJ, Murphy K, Holton JL, Lashley T, Revesz T, Gai WP, Halliday GM (2008) LRRK2 and parkin immunoreactivity in multiple system atrophy inclusions. Acta Neuropathol 116:639–646PubMedCrossRefGoogle Scholar
  37. 37.
    Inoue M, Yagishita S, Ryo M, Hasegawa K, Amano N, Matsushita M (1997) The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree of involvement of striatonigral and olivopontocerebellar systems. Acta Neuropathol 93:585–591PubMedCrossRefGoogle Scholar
  38. 38.
    Ishizawa K, Komori T, Sasaki S, Arai N, Mizutani T, Hirose T (2004) Microglial activation parallels system degeneration in multiple system atrophy. J Neuropathol Exp Neurol 63:43–52PubMedGoogle Scholar
  39. 39.
    Ishizawa K, Komori T, Arai N, Mizutani T, Hirose T (2008) Glial cytoplasmic inclusions and tissue injury in multiple system atrophy: a quantitative study in white matter (olivopontocerebellar system) and gray matter (nigrostriatal system). Neuropathology 28:249–257PubMedCrossRefGoogle Scholar
  40. 40.
    Iwatsubo T (2007) Pathological biochemistry of alpha-synucleinopathy. Neuropathology 27:474–478PubMedCrossRefGoogle Scholar
  41. 41.
    Jellinger KA, Stadelmann C (2000) The enigma of cell death in neurodegenerative disorders. J Neural Transm Suppl 60:21–36PubMedGoogle Scholar
  42. 42.
    Jellinger KA, Stadelmann C (2000) Mechanisms of cell death in neurodegenerative disorders. J Neural Transm Suppl 59:95–114PubMedGoogle Scholar
  43. 43.
    Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(Suppl 6):S2–S12PubMedCrossRefGoogle Scholar
  44. 44.
    Jellinger KA, Seppi K, Wenning GK (2005) Grading of neuropathology in multiple system atrophy: proposal for a novel scale. Mov Disord 20(Suppl 12):S29–S36PubMedCrossRefGoogle Scholar
  45. 45.
    Jellinger KA (2006) P25alpha immunoreactivity in multiple system atrophy and Parkinson disease. Acta Neuropathol 112:112PubMedCrossRefGoogle Scholar
  46. 46.
    Jellinger KA (2007) Lewy body disorders. In: Youdim MBH, Riederer P, Mandel SA, Battistin L, Lajtha A (eds) Degenerative diseases of the nervous system. Springer, New York, pp 267–343Google Scholar
  47. 47.
    Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Spooren W, Fuss B, Mallon B, Macklin WB, Fujiwara H, Hasegawa M, Iwatsubo T, Kretzschmar HA, Haass C (2002) Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583–588PubMedCrossRefGoogle Scholar
  48. 48.
    Kahle PJ (2008) Alpha-synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:87–95PubMedCrossRefGoogle Scholar
  49. 49.
    Kato S, Nakamura H (1990) Cytoplasmic argyrophilic inclusions in neurons of pontine nuclei in patients with olivopontocerebellar atrophy: immunohistochemical and ultrastructural studies. Acta Neuropathol 79:584–594PubMedCrossRefGoogle Scholar
  50. 50.
    Kato S, Nakamura H, Hirano A, Ito H, Llena JF, Yen SH (1991) Argyrophilic ubiquitinated cytoplasmic inclusions of Leu-7-positive glial cells in olivopontocerebellar atrophy (multiple system atrophy). Acta Neuropathol 82:488–493PubMedCrossRefGoogle Scholar
  51. 51.
    Kawamoto Y, Akiguchi I, Nakamura S, Budka H (2002) Accumulation of 14-3-3 proteins in glial cytoplasmic inclusions in multiple system atrophy. Ann Neurol 52:722–731PubMedCrossRefGoogle Scholar
  52. 52.
    Kawamoto Y, Akiguchi I, Shirakashi Y, Honjo Y, Tomimoto H, Takahashi R, Budka H (2007) Accumulation of Hsc70 and Hsp70 in glial cytoplasmic inclusions in patients with multiple system atrophy. Brain Res 1136:219–227PubMedCrossRefGoogle Scholar
  53. 53.
    Kawamoto Y, Kobayashi Y, Suzuki Y, Inoue H, Tomimoto H, Akiguchi I, Budka H, Martins LM, Downward J, Takahashi R (2008) Accumulation of HtrA2/Omi in neuronal and glial inclusions in brains with alpha-synucleinopathies. J Neuropathol Exp Neurol 67:984–993PubMedCrossRefGoogle Scholar
  54. 54.
    Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69:2093–2104PubMedCrossRefGoogle Scholar
  55. 55.
    Komori T, Ishizawa K, Arai N, Hirose T, Mizutani T, Oda M (2003) Immunoexpression of 14-3-3 proteins in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathol (Berl) 106:66–70Google Scholar
  56. 56.
    Kovacs GG, Gelpi E, Lehotzky A, Hoftberger R, Erdei A, Budka H, Ovadi J (2007) The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol 113:153–161PubMedCrossRefGoogle Scholar
  57. 57.
    Langerveld AJ, Mihalko D, DeLong C, Walburn J, Ide CF (2007) Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov Disord 22:766–777PubMedCrossRefGoogle Scholar
  58. 58.
    Lantos PL, Papp MI (1994) Cellular pathology of multiple system atrophy: a review. J Neurol Neurosurg Psychiatry 57:129–133PubMedCrossRefGoogle Scholar
  59. 59.
    Lantos PL (1998) The definition of multiple system atrophy: a review of recent developments. J Neuropathol Exp Neurol 57:1099–1111PubMedCrossRefGoogle Scholar
  60. 60.
    Lantos PL, Quinn N (2003) Dementia with Lewy bodies. In: Dickson DW (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 188–199Google Scholar
  61. 61.
    Lantos PL, Quinn N (2003) Multiple system atrophy. In: Dickson DW (ed) Neurodegeneration: the molecular. pathology of dementia and movement disorders, 1st edn. ISN Neuropath Press, Basel, pp 203–214Google Scholar
  62. 62.
    Lindersson E, Lundvig D, Petersen C, Madsen P, Nyengaard JR, Hojrup P, Moos T, Otzen D, Gai WP, Blumbergs PC, Jensen PH (2005) p25alpha stimulates alpha-synuclein aggregation and is co-localized with aggregated alpha-synuclein in alpha-synucleinopathies. J Biol Chem 280:5703–5715PubMedCrossRefGoogle Scholar
  63. 63.
    Matsuo A, Akiguchi I, Lee GC, McGeer EG, McGeer PL, Kimura J (1998) Myelin degeneration in multiple system atrophy detected by unique antibodies. Am J Pathol 153:735–744PubMedGoogle Scholar
  64. 64.
    Matsusue E, Fujii S, Kanasaki Y, Sugihara S, Miyata H, Ohama E, Ogawa T (2008) Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology 50:559–567PubMedCrossRefGoogle Scholar
  65. 65.
    Matsusue E, Fujii S, Kanasaki Y, Kaminou T, Ohama E, Ogawa T (2009) Cerebellar lesions in multiple system atrophy: postmortem MR imaging-pathologic correlations. Am J Neuroradiol 30:1725–1730PubMedCrossRefGoogle Scholar
  66. 66.
    Melrose HL, Kent CB, Taylor JP, Dachsel JC, Hinkle KM, Lincoln SJ, Mok SS, Culvenor JG, Masters CL, Tyndall GM, Bass DI, Ahmed Z, Andorfer CA, Ross OA, Wszolek ZK, Delldonne A, Dickson DW, Farrer MJ (2007) A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease. Neuroscience 147:1047–1058PubMedCrossRefGoogle Scholar
  67. 67.
    Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, McGeer PL (2006) LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol 65:953–963PubMedCrossRefGoogle Scholar
  68. 68.
    Miller DW, Johnson JM, Solano SM, Hollingsworth ZR, Standaert DG, Young AB (2005) Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm 112:1613–1624PubMedCrossRefGoogle Scholar
  69. 69.
    Mollenhauer B, Cullen V, Kahn I, Krastins B, Outeiro TF, Pepivani I, Ng J, Schulz-Schaeffer W, Kretzschmar HA, McLean PJ, Trenkwalder C, Sarracino DA, Vonsattel JP, Locascio JJ, El-Agnaf OM, Schlossmacher MG (2008) Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 213:315–325PubMedCrossRefGoogle Scholar
  70. 70.
    Nakamura S, Kawamoto Y, Nakano S, Akiguchi I (2000) Expression of the endocytosis regulatory proteins Rab5 and Rabaptin-5 in glial cytoplasmic inclusions from brains with multiple system atrophy. Clin Neuropathol 19:51–56PubMedGoogle Scholar
  71. 71.
    Nakamura S, Kawamoto Y, Kitajima K, Honjo Y, Matsuo A, Nakano S, Akiguchi I (2001) Immunohistochemical localization of phosphoinositide 3-kinase in brains with multiple system atrophy. Clin Neuropathol 20:243–247PubMedGoogle Scholar
  72. 72.
    Nakayama K, Suzuki Y, Yazawa I (2009) Microtubule depolymerization suppresses alpha-synuclein accumulation in a mouse model of multiple system atrophy. Am J Pathol 174:1471–1480PubMedCrossRefGoogle Scholar
  73. 73.
    Nishie M, Mori F, Fujiwara H, Hasegawa M, Yoshimoto M, Iwatsubo T, Takahashi H, Wakabayashi K (2004) Accumulation of phosphorylated alpha-synuclein in the brain and peripheral ganglia of patients with multiple system atrophy. Acta Neuropathol 107:292–298PubMedCrossRefGoogle Scholar
  74. 74.
    Nishie M, Mori F, Yoshimoto M, Takahashi H, Wakabayashi K (2004) A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 30:546–554PubMedCrossRefGoogle Scholar
  75. 75.
    Orosz F, Kovacs GG, Lehotzky A, Olah J, Vincze O, Ovadi J (2004) TPPP/p25: from unfolded protein to misfolding disease: prediction and experiments. Biol Cell 96:701–711PubMedCrossRefGoogle Scholar
  76. 76.
    Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4:111–124PubMedGoogle Scholar
  77. 77.
    Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, Healy DG, Wood NW, Lees AJ, Holton JL, Revesz T (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671PubMedCrossRefGoogle Scholar
  78. 78.
    Ozawa T (2007) Morphological substrate of autonomic failure and neurohormonal dysfunction in multiple system atrophy: impact on determining phenotype spectrum. Acta Neuropathol (Berl) 114:201–211CrossRefGoogle Scholar
  79. 79.
    Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, Fredenburg RA, Lansbury PT Jr, Fernandez CO, Eliezer D, Zweckstetter M, Lashuel HA (2008) Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem 283:16895–16905PubMedCrossRefGoogle Scholar
  80. 80.
    Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, Chiappe D, Moniatte M, Schneider BL, Aebischer P, Eliezer D, Zweckstetter M, Masliah E, Lashuel HA (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits α-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 30:3184–3198PubMedCrossRefGoogle Scholar
  81. 81.
    Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100PubMedCrossRefGoogle Scholar
  82. 82.
    Papp MI, Lantos PL (1992) Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J Neurol Sci 107:172–182PubMedCrossRefGoogle Scholar
  83. 83.
    Papp MI, Lantos PL (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 117(Pt 2):235–243PubMedCrossRefGoogle Scholar
  84. 84.
    Piao YS, Hayashi S, Hasegawa M, Wakabayashi K, Yamada M, Yoshimoto M, Ishikawa A, Iwatsubo T, Takahashi H (2001) Co-localization of alpha-synuclein and phosphorylated tau in neuronal and glial cytoplasmic inclusions in a patient with multiple system atrophy of long duration. Acta Neuropathol 101:285–293PubMedGoogle Scholar
  85. 85.
    Pountney DL, Dickson TC, Power JH, Vickers JC, West AJ, Gai WP (2009) Association of metallothionein-III with oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurotox Res. doi: 10.1007/s12640-12009-19146-12646
  86. 86.
    Probst-Cousin S, Rickert CH, Schmid KW, Gullotta F (1998) Cell death mechanisms in multiple system atrophy. J Neuropathol Exp Neurol 57:814–821PubMedCrossRefGoogle Scholar
  87. 87.
    Quinn N (1989) Multiple system atrophy—the nature of the beast. J Neurol Neurosurg Psychiatry 52(Suppl):78–89CrossRefGoogle Scholar
  88. 88.
    Richter-Landsberg C, Gorath M, Trojanowski JQ, Lee VM (2000) Alpha-synuclein is developmentally expressed in cultured rat brain oligodendrocytes. J Neurosci Res 62:9–14PubMedCrossRefGoogle Scholar
  89. 89.
    Riedel M, Goldbaum O, Richter-Landsberg C (2009) Alpha-synuclein promotes the recruitment of tau to protein inclusions in oligodendroglial cells: effects of oxidative and proteolytic stress. J Mol Neurosci 39:226–234PubMedCrossRefGoogle Scholar
  90. 90.
    Sato K, Kaji R, Matsumoto S, Goto S (2007) Cell type-specific neuronal loss in the putamen of patients with multiple system atrophy. Mov Disord 22:738–742PubMedCrossRefGoogle Scholar
  91. 91.
    Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, Langston JW, Mizuno Y, Hyman BT, Selkoe DJ, Kosik KS (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160:1655–1667PubMedGoogle Scholar
  92. 92.
    Schlossmacher MG (2007) Alpha-synuclein and synucleinopathies. In: Growdon J, Rossor MN (eds) The dementias 2. Butterworth Heinemann, London, pp 184–213Google Scholar
  93. 93.
    Scholz SW, Houlden H, Schulte C, Sharma M, Li A, Berg D, Melchers A, Paudel R, Gibbs JR, Simon-Sanchez J, Paisan-Ruiz C, Bras J, Ding J, Chen H, Traynor BJ, Arepalli S, Zonozi RR, Revesz T, Holton J, Wood N, Lees A, Oertel W, Wullner U, Goldwurm S, Pellecchia MT, Illig T, Riess O, Fernandez HH, Rodriguez RL, Okun MS, Poewe W, Wenning GK, Hardy JA, Singleton AB, Gasser T (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65:610–614PubMedCrossRefGoogle Scholar
  94. 94.
    Shibuya K, Uchihara T, Nakamura A, Ishiyama M, Yamaoka K, Yagishita S, Iwabuchi K, Kosaka K (2003) Reversible conformational change of tau2 epitope on exposure to detergent in glial cytoplasmic inclusions of multiple system atrophy. Acta Neuropathol 105:508–514PubMedGoogle Scholar
  95. 95.
    Shults CW, Rockenstein E, Crews L, Adame A, Mante M, Larrea G, Hashimoto M, Song D, Iwatsubo T, Tsuboi K, Masliah E (2005) Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci 25:10689–10699PubMedCrossRefGoogle Scholar
  96. 96.
    Soma H, Yabe I, Takei A, Fujiki N, Yanagihara T, Sasaki H (2008) Associations between multiple system atrophy and polymorphisms of SLC1A4, SQSTM1, and EIF4EBP1 genes. Mov Disord 23:1161–1167PubMedCrossRefGoogle Scholar
  97. 97.
    Sone M, Yoshida M, Hashizume Y, Hishikawa N, Sobue G (2005) Alpha-synuclein-immunoreactive structure formation is enhanced in sympathetic ganglia of patients with multiple system atrophy. Acta Neuropathol 110:19–26PubMedCrossRefGoogle Scholar
  98. 98.
    Song YJ, Lundvig DM, Huang Y, Gai WP, Blumbergs PC, Hojrup P, Otzen D, Halliday GM, Jensen PH (2007) p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am J Pathol 171:1291–1303PubMedCrossRefGoogle Scholar
  99. 99.
    Song YJC, Huang Y, Gai WP, Jensen PH, Halliday GM (2008) Correlations between striatal oligodendroglial abnormalities and neuron loss in multiple system atrophy (abstract). Mov Disord 23(Suppl.1):S266Google Scholar
  100. 100.
    Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208PubMedCrossRefGoogle Scholar
  101. 101.
    Stefanova N, Tison F, Reindl M, Poewe W, Wenning GK (2005) Animal models of multiple system atrophy. Trends Neurosci 28:501–506PubMedCrossRefGoogle Scholar
  102. 102.
    Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W, Wenning GK (2007) Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord 22:2196–2203PubMedCrossRefGoogle Scholar
  103. 103.
    Stefanova N, Bucke P, Duerr S, Wenning GK (2009) Multiple system atrophy: an update. Lancet Neurol 8:1172–1178PubMedCrossRefGoogle Scholar
  104. 104.
    Stefanova N, Hainzer M, Stemberger S, Couillard-Despres S, Aigner L, Poewe W, Wenning GK (2009) Striatal transplantation for multiple system atrophy—are grafts affected by alpha-synucleinopathy? Exp Neurol 219:368–371PubMedCrossRefGoogle Scholar
  105. 105.
    Takahashi M, Tomizawa K, Ishiguro K, Sato K, Omori A, Sato S, Shiratsuchi A, Uchida T, Imahori K (1991) A novel brain-specific 25 kDa protein (p25) is phosphorylated by a Ser/Thr-Pro kinase (TPK II) from tau protein kinase fractions. FEBS Lett 289:37–43PubMedCrossRefGoogle Scholar
  106. 106.
    Takahashi M, Tomizawa K, Fujita SC, Sato K, Uchida T, Imahori K (1993) A brain-specific protein p25 is localized and associated with oligodendrocytes, neuropil, and fiber-like structures of the CA3 hippocampal region in the rat brain. J Neurochem 60:228–235PubMedCrossRefGoogle Scholar
  107. 107.
    Tang XM, Strocchi P, Cambi F (1998) Changes in the activity of cdk2 and cdk5 accompany differentiation of rat primary oligodendrocytes. J Cell Biochem 68:128–137PubMedCrossRefGoogle Scholar
  108. 108.
    Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43PubMedCrossRefGoogle Scholar
  109. 109.
    Terni B, Rey MJ, Boluda S, Torrejon-Escribano B, Sabate MP, Calopa M, van Leeuwen FW, Ferrer I (2007) Mutant ubiquitin and p62 immunoreactivity in cases of combined multiple system atrophy and Alzheimer’s disease. Acta Neuropathol 113:403–416PubMedCrossRefGoogle Scholar
  110. 110.
    Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD, Kish SJ, Hornykiewicz O, Furukawa Y (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–188PubMedCrossRefGoogle Scholar
  111. 111.
    Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620PubMedCrossRefGoogle Scholar
  112. 112.
    Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44:415–422PubMedCrossRefGoogle Scholar
  113. 113.
    Ubhi K, Lee PH, Adame A, Inglis C, Mante M, Rockenstein E, Stefanova N, Wenning GK, Masliah E (2009) Mitochondrial inhibitor 3-nitroproprionic acid enhances oxidative modification of alpha-synuclein in a transgenic mouse model of multiple system atrophy. J Neurosci Res 87:2728–2739PubMedCrossRefGoogle Scholar
  114. 114.
    Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, Lyubchenko YL, Fink AL (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134:84–102PubMedCrossRefGoogle Scholar
  115. 115.
    Uyama N, Uchihara T, Mochizuki Y, Nakamura A, Takahashi R, Mizutani T (2009) Selective nuclear shrinkage of oligodendrocytes lacking glial cytoplasmic inclusions in multiple system atrophy: a 3-dimensional volumetric study. J Neuropathol Exp Neurol 68:1084–1091PubMedCrossRefGoogle Scholar
  116. 116.
    Viallet F, Maues De Paula A, Bonnefoi B, Gayraud D, Julou M, Sault M-C, Pellissier J-F (2009) Preclinical multiple system atrophy: a neuropathological case report in a 81-year-old man with isolated REM sleep behavioral disorder (abstr). Mov Disord 24(Suppl 1):S429Google Scholar
  117. 117.
    Wakabayashi K, Mori F, Nishie M, Oyama Y, Kurihara A, Yoshimoto M, Kuroda N (2005) An autopsy case of early (“minimal change”) olivopontocerebellar atrophy (multiple system atrophy-cerebellar). Acta Neuropathol 110:185–190PubMedCrossRefGoogle Scholar
  118. 118.
    Wakabayashi K, Takahashi H (2006) Cellular pathology in multiple system atrophy. Neuropathology 26:338–345PubMedCrossRefGoogle Scholar
  119. 119.
    Wenning GK, Quinn N, Magalhaes M, Mathias C, Daniel SE (1994) “Minimal change” multiple system atrophy. Mov Disord 9:161–166PubMedCrossRefGoogle Scholar
  120. 120.
    Wenning GK, Jellinger KA (2005) The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol 109:129–140PubMedCrossRefGoogle Scholar
  121. 121.
    Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG (2008) Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 64:239–246PubMedCrossRefGoogle Scholar
  122. 122.
    Wenning GK, Stefanova N (2009) Recent developments in multiple system atrophy. J Neurol 256:1791–1808PubMedCrossRefGoogle Scholar
  123. 123.
    Yazawa I, Giasson BI, Sasaki R, Zhang B, Joyce S, Uryu K, Trojanowski JQ, Lee VM (2005) Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 45:847–859PubMedCrossRefGoogle Scholar
  124. 124.
    Yoshida M (2007) Multiple system atrophy: alpha-synuclein and neuronal degeneration. Neuropathology 27:484–493PubMedCrossRefGoogle Scholar
  125. 125.
    Yoshida M, Sone M (2009) Mechanism of neuronal degeneration of multiple system atrophy. Brain Nerve 61:1051–1060PubMedGoogle Scholar
  126. 126.
    Zhu X, Siedlak SL, Smith MA, Perry G, Chen SG (2006) LRRK2 protein is a component of Lewy bodies. Ann Neurol 60:617–618 (author reply 618–619)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of Clinical NeurobiologyViennaAustria
  2. 2.Institute of PsychiatryKing’s College LondonLondonUK

Personalised recommendations