Acta Neuropathologica

, Volume 119, Issue 6, pp 669–678

Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment

  • William T. Hu
  • Alice Chen-Plotkin
  • Steven E. Arnold
  • Murray Grossman
  • Christopher M. Clark
  • Leslie M. Shaw
  • Eve Pickering
  • Max Kuhn
  • Yu Chen
  • Leo McCluskey
  • Lauren Elman
  • Jason Karlawish
  • Howard I. Hurtig
  • Andrew Siderowf
  • Virginia M.-Y. Lee
  • Holly Soares
  • John Q. Trojanowski
Original Paper

Abstract

Altered levels of cerebrospinal fluid (CSF) peptides related to Alzheimer’s disease (AD) are associated with pathologic AD diagnosis, although cognitively normal subjects can also have abnormal levels of these AD biomarkers. To identify novel CSF biomarkers that distinguish pathologically confirmed AD from cognitively normal subjects and patients with other neurodegenerative disorders, we collected antemortem CSF samples from 66 AD patients and 25 patients with other neurodegenerative dementias followed longitudinally to neuropathologic confirmation, plus CSF from 33 cognitively normal subjects. We measured levels of 151 novel analytes via a targeted multiplex panel enriched in cytokines, chemokines and growth factors, as well as established AD CSF biomarkers (levels of Aβ42, tau and p-tau181). Two categories of biomarkers were identified: (1) analytes that specifically distinguished AD (especially CSF Aβ42 levels) from cognitively normal subjects and other disorders; and (2) analytes altered in multiple diseases (NrCAM, PDGF, C3, IL-1α), but not in cognitively normal subjects. A multi-prong analytical approach showed AD patients were best distinguished from non-AD cases (including cognitively normal subjects and patients with other neurodegenerative disorders) by a combination of traditional AD biomarkers and novel multiplex biomarkers. Six novel biomarkers (C3, CgA, IL-1α, I-309, NrCAM and VEGF) were correlated with the severity of cognitive impairment at CSF collection, and altered levels of IL-1α and TECK associated with subsequent cognitive decline in 38 longitudinally followed subjects with mild cognitive impairment. In summary, our targeted proteomic screen revealed novel CSF biomarkers that can improve the distinction between AD and non-AD cases by established biomarkers alone.

Keywords

Amyloid beta Abeta42 Diagnosis IL-1α MCI NrCAM PDGF Resistin TECK TDP-43 Tau 

Supplementary material

401_2010_667_MOESM1_ESM.doc (56 kb)
Supplementary material (DOC 56.0 kb)

References

  1. 1.
    Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163CrossRefPubMedGoogle Scholar
  2. 2.
    Clark CM, Davatzikos C, Borthakur A et al (2008) Biomarkers for early detection of Alzheimer pathology. Neurosignals 16:11–18CrossRefPubMedGoogle Scholar
  3. 3.
    Clark CM, Xie S, Chittams J et al (2003) Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60:1696–1702CrossRefPubMedGoogle Scholar
  4. 4.
    Custer AW, Kazarinova-Noyes K, Sakurai T et al (2003) The role of the ankyrin-binding protein Nrcam in node of Ranvier formation. J Neurosci 23:10032–10039PubMedGoogle Scholar
  5. 5.
    Davis JQ, Bennett V (1994) Ankyrin binding activity shared by the Neurofascin/L1/Nrcam family of nervous system cell adhesion molecules. J Biol Chem 269:27163–27166PubMedGoogle Scholar
  6. 6.
    Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the Nincds–Adrda criteria. Lancet Neurol 6:734–746CrossRefPubMedGoogle Scholar
  7. 7.
    Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61:120–129CrossRefPubMedGoogle Scholar
  8. 8.
    Fruttiger M, Calver AR, Richardson WD (2000) Platelet-derived growth factor is constitutively secreted from neuronal cell bodies but not from axons. Curr Biol 10:1283–1286CrossRefPubMedGoogle Scholar
  9. 9.
    Gianni D, Zambrano N, Bimonte M et al (2003) Platelet-derived growth factor induces the beta-gamma-secretase-mediated cleavage of Alzheimer’s amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem 278:9290–9297CrossRefPubMedGoogle Scholar
  10. 10.
    Gozal YM, Duong DM, Gearing M et al (2009) Proteomics analysis reveals novel components in the detergent-insoluble subproteome in Alzheimer’s disease. J Proteome Res 8:5069–5079CrossRefPubMedGoogle Scholar
  11. 11.
    Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281CrossRefPubMedGoogle Scholar
  12. 12.
    Grossman M, Farmer J, Leight S et al (2005) Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 57:721–729CrossRefPubMedGoogle Scholar
  13. 13.
    Lippa CF, Duda JE, Grossman M et al (2007) Dlb and Pdd boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68:812–819CrossRefPubMedGoogle Scholar
  14. 14.
    Lu Z, Kipnis J (2010) Thrombospondin 1—a key astrocyte-derived neurogenic factor. Faseb JGoogle Scholar
  15. 15.
    Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84CrossRefPubMedGoogle Scholar
  16. 16.
    Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedGoogle Scholar
  17. 17.
    Netzer WJ, Dou F, Cai D et al (2003) Gleevec inhibits beta-amyloid production but not notch cleavage. Proc Natl Acad Sci USA 100:12444–12449CrossRefPubMedGoogle Scholar
  18. 18.
    Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of Tdp-43 is a consistent feature in all sporadic and familial forms of Tdp-43 proteinopathies. Acta Neuropathol 117:137–149CrossRefPubMedGoogle Scholar
  19. 19.
    Park S, Hong SM, Sung SR, Jung HK (2008) Long-term effects of central leptin and resistin on body weight, insulin resistance, and beta-cell function and mass by the modulation of hypothalamic leptin and insulin signaling. Endocrinology 149:445–454CrossRefPubMedGoogle Scholar
  20. 20.
    Peskind ER, Li G, Shofer J et al (2006) Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 63:936–939CrossRefPubMedGoogle Scholar
  21. 21.
    Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362CrossRefPubMedGoogle Scholar
  22. 22.
    Ross MA, Miller RG, Berchert L et al (1998) Toward earlier diagnosis of amyotrophic lateral sclerosis: revised criteria: Rhcntf Als Study Group. Neurology 50:768–772PubMedGoogle Scholar
  23. 23.
    Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303CrossRefPubMedGoogle Scholar
  24. 24.
    Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65:403–413CrossRefPubMedGoogle Scholar
  25. 25.
    Steinacker P, Mollenhauer B, Bibl M et al (2004) Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci Lett 370:36–39CrossRefPubMedGoogle Scholar
  26. 26.
    Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of alzheimer-type pathologic changes in the brain. Arch Neurol 66:382–389CrossRefPubMedGoogle Scholar
  27. 27.
    Townson JR, Nibbs RJ (2002) Characterization of mouse Ccx-Ckr, a receptor for the lymphocyte-attracting chemokines Teck/Mccl25, Slc/Mccl21 and Mip-3beta/Mccl19: comparison to human CCX-Ckr. Eur J Immunol 32:1230–1241CrossRefPubMedGoogle Scholar
  28. 28.
    Tsuboi Y, Kakimoto K, Nakajima M et al (2003) Increased hepatocyte growth factor level in cerebrospinal fluid in Alzheimer’s disease. Acta Neurol Scand 107:81–86CrossRefPubMedGoogle Scholar
  29. 29.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121CrossRefPubMedGoogle Scholar
  30. 30.
    Winblad B, Palmer K, Kivipelto M et al (2004) Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med 256:240–246CrossRefPubMedGoogle Scholar
  31. 31.
    Youn BS, Yu KY, Oh J, Lee J, Lee TH, Broxmeyer HE (2002) Role of the Cc chemokine receptor 9/Teck interaction in apoptosis. Apoptosis 7:271–276CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • William T. Hu
    • 1
    • 2
    • 8
  • Alice Chen-Plotkin
    • 1
    • 2
  • Steven E. Arnold
    • 3
  • Murray Grossman
    • 1
  • Christopher M. Clark
    • 1
  • Leslie M. Shaw
    • 4
  • Eve Pickering
    • 7
  • Max Kuhn
    • 7
  • Yu Chen
    • 7
  • Leo McCluskey
    • 1
  • Lauren Elman
    • 1
  • Jason Karlawish
    • 6
  • Howard I. Hurtig
    • 1
  • Andrew Siderowf
    • 1
  • Virginia M.-Y. Lee
    • 2
    • 4
    • 5
  • Holly Soares
    • 7
  • John Q. Trojanowski
    • 2
    • 4
    • 5
  1. 1.Department of NeurologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Center for Neurodegenerative Disease ResearchUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  3. 3.Department of PsychiatryUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  4. 4.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  5. 5.Institute on AgingUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  6. 6.Department of MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  7. 7.Pfizer Global Research and DevelopmentGrotonUSA
  8. 8.Department of NeurologyEmory University School of MedicineAtlantaUSA

Personalised recommendations