Acta Neuropathologica

, Volume 119, Issue 5, pp 641–649 | Cite as

Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas

  • Craig Horbinski
  • Ronald L. Hamilton
  • Yuri Nikiforov
  • Ian F. Pollack
Original Paper

Abstract

Pilocytic astrocytoma (PA) is the most common glioma in the pediatric population. PAs can exhibit variable behavior that does not always correlate with location. Although oncogenic rearrangements of the BRAF gene have recently been described in PAs, it is not clear whether such alterations have an impact on outcome. An institutional cohort of 147 PAs (118 with outcome data) from both cerebellar and non-cerebellar locations (spine, diencephalon, midbrain, brainstem, and cortex) was utilized in this study. Parameters included quantification of characteristic morphologic variables as well as genes and molecular loci previously shown to be of relevance in high-grade gliomas, including 1p, 9p, 10q, 17p, 19q, and BRAF. Neither 1p, 9p, and 10q nor 19q showed significant association with outcome in PAs, although p16 deletion was more common in PAs of the midbrain, brainstem, and spinal cord. Loss of heterozygosity on 17p13 correlated with increased risk of recurrence in cerebellar tumors. BRAF gene rearrangements were more common in cerebellar tumors than non-cerebellar tumors and associated with classic biphasic histology in the cerebellum. However, clinical outcome was independent of BRAF status. The molecular biology of PAs differs according to location, yet BRAF rearrangements do not appear to produce PAs with different behavior. Nevertheless, such tumors may have altered sensitivity to pathway-specific adjuvant therapy. Additionally, deletion on 17p13 may be an adverse prognostic biomarker in cerebellar tumors.

Keywords

Pilocytic astrocytoma BRAF p16 p53 17p 

Notes

Acknowledgments

The authors thank Colleen Lovell and Judy Burnham for their histological expertise; Kathy Cieply, John Salvatore, and Carol Sherer for their assistance in fluorescence in situ hybridization; and Marianne Notaro and Michelle Bisceglia for TMA preparation. This study was funded by a Brain Tumor Society Award from the Pediatric Low Grade Glioma Foundation and NIH R01 NS37704. CH was supported by a Callie Rohr/American Brain Tumor Association Fellowship. Portions of this data were presented at the American Association of Neuropathologists 2009 Annual Meeting in San Antonio, TX.

Conflicts of interest statement

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adjei AA, Cohen RB, Franklin W et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers. J Clin Oncol 26(13):2139–2146CrossRefPubMedGoogle Scholar
  2. 2.
    Agamanolis DP, Malone JM (1995) Chromosomal abnormalities in 47 pediatric brain tumors. Cancer Genet Cytogenet 81(2):125–134CrossRefPubMedGoogle Scholar
  3. 3.
    Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67(9):878–887CrossRefPubMedGoogle Scholar
  4. 4.
    Bhattacharjee MB, Armstrong DD, Vogel H, Cooley LD (1997) Cytogenetic analysis of 120 primary pediatric brain tumors and literature review. Cancer Genet Cytogenet 97(1):39–53CrossRefPubMedGoogle Scholar
  5. 5.
    Blumenschein GR Jr, Gatzemeier U, Fossella F et al (2009) Phase II, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non-small-cell lung cancer. J Clin Oncol 27(26):4274–4280CrossRefPubMedGoogle Scholar
  6. 6.
    Campbell JW, Pollack IF (1996) Cerebellar astrocytomas in children. J Neurooncol 28(2–3):223–231PubMedGoogle Scholar
  7. 7.
    Cheng Y, Pang JC, Ng HK et al (2000) Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology 37(5):437–444CrossRefPubMedGoogle Scholar
  8. 8.
    Ciampi R, Knauf JA, Kerler R et al (2005) Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115(1):94–101PubMedGoogle Scholar
  9. 9.
    Dirven CM, Mooij JJ, Molenaar WM (1997) Cerebellar pilocytic astrocytoma: a treatment protocol based upon analysis of 73 cases and a review of the literature. Childs Nerv Syst 13(1):17–23CrossRefPubMedGoogle Scholar
  10. 10.
    Due-Tonnessen BJ, Helseth E, Scheie D, Skullerud K, Aamodt G, Lundar T (2002) Long-term outcome after resection of benign cerebellar astrocytomas in children and young adults (0–19 years): report of 110 consecutive cases. Pediatr Neurosurg 37(2):71–80CrossRefPubMedGoogle Scholar
  11. 11.
    Elisei R, Ugolini C, Viola D et al (2008) BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93(10):3943–3949CrossRefPubMedGoogle Scholar
  12. 12.
    Fecher LA, Cummings SD, Keefe MJ, Alani RM (2007) Toward a molecular classification of melanoma. J Clin Oncol 25(12):1606–1620CrossRefPubMedGoogle Scholar
  13. 13.
    Fernandez C, Figarella-Branger D, Girard N et al (2003) Pilocytic astrocytomas in children: prognostic factors—a retrospective study of 80 cases. Neurosurgery 53(3):544–553 (discussion 554–545)CrossRefPubMedGoogle Scholar
  14. 14.
    Forshew T, Tatevossian RG, Lawson AR et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218(2):172–181CrossRefPubMedGoogle Scholar
  15. 15.
    Forsyth PA, Shaw EG, Scheithauer BW, O’Fallon JR, Layton DD Jr, Katzmann JA (1993) Supratentorial pilocytic astrocytomas. A clinicopathologic, prognostic, and flow cytometric study of 51 patients. Cancer 72(4):1335–1342CrossRefPubMedGoogle Scholar
  16. 16.
    Hayes VM, Dirven CM, Dam A et al (1999) High frequency of TP53 mutations in juvenile pilocytic astrocytomas indicates role of TP53 in the development of these tumors. Brain Pathol 9(3):463–467PubMedCrossRefGoogle Scholar
  17. 17.
    Hoeflich KP, Herter S, Tien J et al (2009) Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Res 69(7):3042–3051CrossRefPubMedGoogle Scholar
  18. 18.
    Horbinski C, Hamilton RL, Lovell C, Burnham J, Pollack IF (2009) Impact of morphology, MIB-1, p53 and MGMT on outcome in pilocytic astrocytomas. Brain Pathol. doi:10.1111/j.1750-3639.2009.00336.x
  19. 19.
    Jass JR (2006) Colorectal cancer: a multipathway disease. Crit Rev Oncog 12(3–4):273–287PubMedGoogle Scholar
  20. 20.
    Jones DT, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677CrossRefPubMedGoogle Scholar
  21. 21.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28(20):2119–2123CrossRefPubMedGoogle Scholar
  22. 22.
    Korshunov A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118(3):401–405CrossRefPubMedGoogle Scholar
  23. 23.
    Lavon I, Fuchs D, Zrihan D et al (2007) Novel mechanism whereby nuclear factor kappaB mediates DNA damage repair through regulation of O(6)-methylguanine-DNA-methyltransferase. Cancer Res 67(18):8952–8959CrossRefPubMedGoogle Scholar
  24. 24.
    Liu D, Liu Z, Jiang D, Dackiw AP, Xing M (2007) Inhibitory effects of the mitogen-activated protein kinase kinase inhibitor CI-1040 on the proliferation and tumor growth of thyroid cancer cells with BRAF or RAS mutations. J Clin Endocrinol Metab 92(12):4686–4695CrossRefPubMedGoogle Scholar
  25. 25.
    Lo RS, Witte ON (2008) Transforming growth factor-beta activation promotes genetic context-dependent invasion of immortalized melanocytes. Cancer Res 68(11):4248–4257CrossRefPubMedGoogle Scholar
  26. 26.
    Lorusso PM, Adjei AA, Varterasian M et al (2005) Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23(23):5281–5293CrossRefPubMedGoogle Scholar
  27. 27.
    Nagasaka T, Sasamoto H, Notohara K et al (2004) Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. J Clin Oncol 22(22):4584–4594CrossRefPubMedGoogle Scholar
  28. 28.
    Nikiforov YE (2008) Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21(Suppl 2):S37–S43CrossRefPubMedGoogle Scholar
  29. 29.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453CrossRefPubMedGoogle Scholar
  30. 30.
    Patra SK (2008) Ras regulation of DNA-methylation and cancer. Exp Cell Res 314(6):1193–1201CrossRefPubMedGoogle Scholar
  31. 31.
    Pfister S, Janzarik WG, Remke M et al (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118(5):1739–1749CrossRefPubMedGoogle Scholar
  32. 32.
    Pollack IF, Campbell JW, Hamilton RL, Martinez AJ, Bozik ME (1997) Proliferation index as a predictor of prognosis in malignant gliomas of childhood. Cancer 79(4):849–856CrossRefPubMedGoogle Scholar
  33. 33.
    Pollack IF, Finkelstein SD, Burnham J et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61(20):7404–7407PubMedGoogle Scholar
  34. 34.
    Pollack IF, Finkelstein SD, Woods J et al (2002) Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 346(6):420–427CrossRefPubMedGoogle Scholar
  35. 35.
    Pollack IF, Hamilton RL, Finkelstein SD et al (1997) The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res 57(2):304–309PubMedGoogle Scholar
  36. 36.
    Pollack IF, Hamilton RL, Sobol RW et al (2006) O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol 24(21):3431–3437CrossRefPubMedGoogle Scholar
  37. 37.
    Rinehart J, Adjei AA, Lorusso PM et al (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22(22):4456–4462CrossRefPubMedGoogle Scholar
  38. 38.
    Roberts P, Chumas PD, Picton S, Bridges L, Livingstone JH, Sheridan E (2001) A review of the cytogenetics of 58 pediatric brain tumors. Cancer Genet Cytogenet 131(1):1–12CrossRefPubMedGoogle Scholar
  39. 39.
    Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N (2000) Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82(6):1218–1222CrossRefPubMedGoogle Scholar
  40. 40.
    Sharma MK, Zehnbauer BA, Watson MA, Gutmann DH (2005) RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. Neurology 65(8):1335–1336CrossRefPubMedGoogle Scholar
  41. 41.
    Shinozaki M, Fujimoto A, Morton DL, Hoon DS (2004) Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res 10(5):1753–1757CrossRefPubMedGoogle Scholar
  42. 42.
    Sievert AJ, Jackson EM, Gai X et al (2009) Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19(3):449–458CrossRefPubMedGoogle Scholar
  43. 43.
    Souglakos J, Philips J, Wang R et al (2009) Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br J Cancer 101(3):465–472CrossRefPubMedGoogle Scholar
  44. 44.
    Tada K, Kochi M, Saya H et al (2003) Preliminary observations on genetic alterations in pilocytic astrocytomas associated with neurofibromatosis 1. NeuroOncology 5(4):228–234Google Scholar
  45. 45.
    Tibbetts KM, Emnett RJ, Gao F et al (2009) Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 117(6):657–665CrossRefPubMedGoogle Scholar
  46. 46.
    von Deimling A, Fimmers R, Schmidt MC et al (2000) Comprehensive allelotype and genetic analysis of 466 human nervous system tumors. J Neuropathol Exp Neurol 59(6):544–558Google Scholar
  47. 47.
    Willert JR, Daneshvar L, Sheffield VC, Cogen PH (1995) Deletion of chromosome arm 17p DNA sequences in pediatric high-grade and juvenile pilocytic astrocytomas. Genes Chrom Cancer 12(3):165–172CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Craig Horbinski
    • 1
  • Ronald L. Hamilton
    • 2
  • Yuri Nikiforov
    • 2
  • Ian F. Pollack
    • 3
  1. 1.Department of PathologyUniversity of KentuckyLexingtonUSA
  2. 2.Department of PathologyUniversity of PittsburghPittsburghUSA
  3. 3.Department of Pediatric NeurosurgeryChildren’s Hospital of PittsburghPittsburghUSA

Personalised recommendations