Advertisement

Acta Neuropathologica

, Volume 119, Issue 1, pp 55–73 | Cite as

Ependymal cells: biology and pathology

  • Marc R. Del Bigio
Review

Abstract

The literature was reviewed to summarize the current understanding of the role of ciliated ependymal cells in the mammalian brain. Previous reviews were summarized. Publications from the past 10 years highlight interactions between ependymal cells and the subventricular zone and the possible role of restricted ependymal populations in neurogenesis. Ependymal cells provide trophic support and possibly metabolic support for progenitor cells. Channel proteins such as aquaporins may be important for determining water fluxes at the ventricle wall. The junctional and anchoring proteins are now fairly well understood, as are proteins related to cilia function. Defects in ependymal adhesion and cilia function can cause hydrocephalus through several different mechanisms, one possibility being loss of patency of the cerebral aqueduct. Ependymal cells are susceptible to infection by a wide range of common viruses; while they may act as a line of first defense, they eventually succumb to repeated attacks in long-lived organisms. Ciliated ependymal cells are almost certainly important during brain development. However, the widespread absence of ependymal cells from the adult human lateral ventricles suggests that they may have only regionally restricted value in the mature brain of large size.

Keywords

Mammal Brain Glial cell Ependyma Hydrocephalus Brain development Cell junction Cilia 

Notes

Acknowledgments

The author holds the Canada Research Chair in Developmental Neuropathology. The author thanks Dr. K. Kosaki (Keio University School of Medicine, Tokyo, Japan) for providing slides from a fetus with hydrocephalus and cilia disease.

References

  1. 1.
    Adorjan I, Kalman M (2009) Distribution of beta-dystroglycan immunopositive globules in the subventricular zone of rat brain. Glia 57:657–666PubMedGoogle Scholar
  2. 2.
    Alvarez JI, Teale JM (2007) Differential changes in junctional complex proteins suggest the ependymal lining as the main source of leukocyte infiltration into ventricles in murine neurocysticercosis. J Neuroimmunol 187:102–113PubMedGoogle Scholar
  3. 3.
    An J, Zhou DS, Kawasaki K, Yasui K (2003) The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Arch 442:472–481PubMedGoogle Scholar
  4. 4.
    Arai Y, Deguchi K, Takashima S (1998) Vascular endothelial growth factor in brains with periventricular leukomalacia. Pediatr Neurol 19:45–49PubMedGoogle Scholar
  5. 5.
    Asada-Kubota M, Ueda T, Nakashima T, Kobayashi M, Shimada M, Takeda K, Hamada K, Maekawa S, Sokawa Y (1997) Localization of 2′, 5′-oligoadenylate synthetase and the enhancement of its activity with recombinant interferon-alpha A/D in the mouse brain. Anat Embryol (Berl) 195:251–257Google Scholar
  6. 6.
    Azzi G, Jouis V, Godeau G, Groult N, Robert AM (1989) Immunolocalisation of extracellular matrix macromolecules in the rat spinal cord. Matrix 9:479–485PubMedGoogle Scholar
  7. 7.
    Baas D, Meiniel A, Benadiba C, Bonnafe E, Meiniel O, Reith W, Durand B (2006) A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 24:1020–1030PubMedGoogle Scholar
  8. 8.
    Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378PubMedGoogle Scholar
  9. 9.
    Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339PubMedGoogle Scholar
  10. 10.
    Batiz LF, Oliver C, Alvarez M, Rodriguez S, Rodriguez EM (2006) Molecular mechanisms underlying neuroepithelial/ependymal denudation in the hydrocephalic hyh mutant: spatial and temporal expression of alpha-SNAP and N-cadherin. CSF Res 3(Suppl 1):S16Google Scholar
  11. 11.
    Beilharz EJ, Russo VC, Butler G, Baker NL, Connor B, Sirimanne ES, Dragunow M, Werther GA, Gluckman PD, Williams CE, Scheepens A (1998) Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury. Brain Res Mol Brain Res 59:119–134PubMedGoogle Scholar
  12. 12.
    Belliveau DJ, Naus CC (1995) Cellular localization of gap junction mRNAs in developing rat brain. Dev Neurosci 17:81–96PubMedGoogle Scholar
  13. 13.
    Berry RJ (1961) The inheritance and pathogenesis of hydrocephalus-3 in the mouse. J Pathol Bacteriol 81:157–167Google Scholar
  14. 14.
    Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72:246–262PubMedGoogle Scholar
  15. 15.
    Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129–164PubMedGoogle Scholar
  16. 16.
    Briski KP, Marshall ES (2001) Induction of ependymal, glial, and neuronal transactivation by intraventricular administration of the SGLT1 Na+-d-glucose cotransporter inhibitor phlorizin. Neurochem Res 26:783–792PubMedGoogle Scholar
  17. 17.
    Brody SL, Yan XH, Wuerffel MK, Song SK, Shapiro SD (2000) Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 23:45–51PubMedGoogle Scholar
  18. 18.
    Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41:2–13PubMedGoogle Scholar
  19. 19.
    Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356:1–19PubMedGoogle Scholar
  20. 20.
    Brusco A, Lopez-Costa JJ, Tagliaferro P, Pecci Saavedra J (1998) Serotonergic ependymal fibres in rat and monkey: light and electron microscopic immunocytochemical study. Biocell 22:115–122PubMedGoogle Scholar
  21. 21.
    Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122PubMedGoogle Scholar
  22. 22.
    Canova C, Neal JW, Gasque P (2006) Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis. J Neuroinflammation 3:22PubMedGoogle Scholar
  23. 23.
    Cardona-Gomez GP, Chowen JA, Garcia-Segura LM (2000) Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. J Neurobiol 43:269–281PubMedGoogle Scholar
  24. 24.
    Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisen J (2009) Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 12:259–267PubMedGoogle Scholar
  25. 25.
    Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295PubMedGoogle Scholar
  26. 26.
    Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796PubMedGoogle Scholar
  27. 27.
    Chauvet N, Privat A, Prieto M (2004) Differential expression of p120 catenin in glial cells of the adult rat brain. J Comp Neurol 479:15–29PubMedGoogle Scholar
  28. 28.
    Chen S, Yang M, Miselis RR, Aston-Jones G (1999) Characterization of transsynaptic tracing with central application of pseudorabies virus. Brain Res 838:171–183PubMedGoogle Scholar
  29. 29.
    Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471PubMedGoogle Scholar
  30. 30.
    Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10:153–163PubMedGoogle Scholar
  31. 31.
    Cizkova D, Nagyova M, Slovinska L, Novotna I, Radonak J, Cizek M, Mechirova E, Tomori Z, Hlucilova J, Motlik J, Sulla I Jr, Vanicky I (2009) Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat. Cell Mol Neurobiol 29:999–1013PubMedGoogle Scholar
  32. 32.
    Clark I, Awburn M (2002) Migration inhibitory factor in the cerebral and systemic endothelium in sepsis and malaria. Crit Care Med 30:S263–S267PubMedGoogle Scholar
  33. 33.
    Cloft HJ, Mitchell JA (1997) Serotonergic innervation of the supraependymal neuronal complex of the golden hamster. Brain Res 761:210–216PubMedGoogle Scholar
  34. 34.
    Coscoy L, Gonzalez-Dunia D, Chirinian-Swan S, Brahic M, Ozden S (1996) Analysis of the expression directed by two HTLV-I promoters in transgenic mice. J Neurovirol 2:336–344PubMedGoogle Scholar
  35. 35.
    Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105:1026–1031PubMedGoogle Scholar
  36. 36.
    Cuevas P, Gimenez-Gallego G (2000) Fibroblast growth factor and hydrocephalus. Neurol Res 22:102–104PubMedGoogle Scholar
  37. 37.
    Dal Cin P, Van den Berghe H, Buonamici L, Losi L, Roncaroli F, Calbucci F (1999) Cytogenetic investigation in subependymoma. Cancer Genet Cytogenet 108:84PubMedGoogle Scholar
  38. 38.
    Daniel GB, Edwards DF, Harvey RC, Kabalka GW (1995) Communicating hydrocephalus in dogs with congenital ciliary dysfunction. Dev Neurosci 17:230–235PubMedGoogle Scholar
  39. 39.
    Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 97:3428–3432PubMedGoogle Scholar
  40. 40.
    Davy BE, Robinson ML (2003) Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 12:1163–1170PubMedGoogle Scholar
  41. 41.
    Dawe HR, Shaw MK, Farr H, Gull K (2007) The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules. BMC Biol 5:33PubMedGoogle Scholar
  42. 42.
    De Santi MM, Magni A, Valletta EA, Gardi C, Lungarella G (1990) Hydrocephalus, bronchiectasis, and ciliary aplasia. Arch Dis Child 65:543–544PubMedGoogle Scholar
  43. 43.
    de Wit OA, den Dunnen WF, Sollie KM, Munoz RI, Meiners LC, Brouwer OF, Rodriguez EM, Sival DA (2008) Pathogenesis of cerebral malformations in human fetuses with meningomyelocele. Cerebrospinal Fluid Res 5:4PubMedGoogle Scholar
  44. 44.
    Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585PubMedGoogle Scholar
  45. 45.
    Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13PubMedGoogle Scholar
  46. 46.
    Del Bigio MR (2002) Glial linings of the brain. In: WW (ed) The neuronal environment: brain homeostasis in health and disease. Humana Press Totawa, NJ, pp 341–376Google Scholar
  47. 47.
    Del Bigio MR, Bruni JE, Fewer HD (1985) Human neonatal hydrocephalus. An electron microscopic study of the periventricular tissue. J Neurosurg 63:56–63PubMedGoogle Scholar
  48. 48.
    Del Carmen Gomez-Roldan M, Perez-Martin M, Capilla-Gonzalez V, Cifuentes M, Perez J, Garcia-Verdugo JM, Fernandez-Llebrez P (2008) Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. J Comp Neurol 507:1571–1587PubMedGoogle Scholar
  49. 49.
    Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, Michiels T (2006) Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci USA 103:7835–7840PubMedGoogle Scholar
  50. 50.
    Dere E, De Souza-Silva MA, Frisch C, Teubner B, Sohl G, Willecke K, Huston JP (2003) Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes. Eur J Neurosci 18:629–638PubMedGoogle Scholar
  51. 51.
    Didier-Bazes M, Voutsinos B, Aguera M, Peyron C, Akaoka H, Belin MF (1997) Specific potentialities of embryonic rat serotonergic neurons to innervate different periventricular targets in the adult brain. J Comp Neurol 382:29–45PubMedGoogle Scholar
  52. 52.
    Dinopoulos A, Dori I (1995) The development of the serotonergic fiber network of the lateral ventricles of the rat brain: a light and electron microscopic immunocytochemical analysis. Exp Neurol 133:73–84PubMedGoogle Scholar
  53. 53.
    Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134PubMedGoogle Scholar
  54. 54.
    Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  55. 55.
    Dolcetta D, Perani L, Givogri MI, Galbiati F, Amadio S, Del Carro U, Finocchiaro G, Fanzani A, Marchesini S, Naldini L, Roncarolo MG, Bongarzone E (2006) Design and optimization of lentiviral vectors for transfer of GALC expression in Twitcher brain. J Gene Med 8:962–971PubMedGoogle Scholar
  56. 56.
    Dominguez-Pinos MD, Paez P, Jimenez AJ, Weil B, Arraez MA, Perez-Figares JM, Rodriguez EM (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604PubMedGoogle Scholar
  57. 57.
    Duvernoy HM, Risold PY (2007) The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 56:119–147PubMedGoogle Scholar
  58. 58.
    Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276:1118–1128PubMedGoogle Scholar
  59. 59.
    Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG (2005) The choroid plexus in the rise, fall and repair of the brain. Bioessays 27:262–274PubMedGoogle Scholar
  60. 60.
    Emery JL, Staschak MC (1972) The size and form of the cerebral aqueduct in children. Brain 95:591–598PubMedGoogle Scholar
  61. 61.
    Endo T, Yoshino J, Kado K, Tochinai S (2007) Brain regeneration in anuran amphibians. Dev Growth Differ 49:121–129PubMedGoogle Scholar
  62. 62.
    Falkowski M, Schledzewski K, Hansen B, Goerdt S (2003) Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochem Cell Biol 120:361–369PubMedGoogle Scholar
  63. 63.
    Feng X, Papadopoulos MC, Liu J, Li L, Zhang D, Zhang H, Verkman AS, Ma T (2009) Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res 87:1150–1155PubMedGoogle Scholar
  64. 64.
    Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G, Esteves F, Wharton SB, Shaw PJ, O’Brien JT, Ince PG (2006) White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37:1391–1398PubMedGoogle Scholar
  65. 65.
    Figarella-Branger D, Lepidi H, Poncet C, Gambarelli D, Bianco N, Rougon G, Pellissier JF (1995) Differential expression of cell adhesion molecules (CAM), neural CAM and epithelial cadherin in ependymomas and choroid plexus tumors. Acta Neuropathol 89:248–257PubMedGoogle Scholar
  66. 66.
    Filiz S, Dalcik H, Yardimoglu M, Gonca S, Ceylan S (2002) Localization of neural cell adhesion molecule (N-CAM) immunoreactivity in adult rat tissues. Biotech Histochem 77:127–135PubMedGoogle Scholar
  67. 67.
    Fournier JG, Adjou K, Grigoriev V, Deslys JP (2008) Ultrastructural evidence that ependymal cells are infected in experimental scrapie. Acta Neuropathol 115:643–650PubMedGoogle Scholar
  68. 68.
    Fragkoudis R, Breakwell L, McKimmie C, Boyd A, Barry G, Kohl A, Merits A, Fazakerley JK (2007) The type I interferon system protects mice from Semliki Forest virus by preventing widespread virus dissemination in extraneural tissues, but does not mediate the restricted replication of avirulent virus in central nervous system neurons. J Gen Virol 88:3373–3384PubMedGoogle Scholar
  69. 69.
    Francavilla R, Margiotta M, Marangi S, Burattini O, Francavilla A, Panella C, Ierardi E (2005) Immunohistostaining of hepatitis C virus non-structural protein 4 in ependymocytes of uninfected mice: an antigenic mimicry? Scand J Gastroenterol 40:992–994PubMedGoogle Scholar
  70. 70.
    Franklin JL, Yoshiura K, Dempsey PJ, Bogatcheva G, Jeyakumar L, Meise KS, Pearsall RS, Threadgill D, Coffey RJ (2005) Identification of MAGI-3 as a transforming growth factor-alpha tail binding protein. Exp Cell Res 303:457–470PubMedGoogle Scholar
  71. 71.
    Frautschy SA, Walicke PA, Baird A (1991) Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res 553:291–299PubMedGoogle Scholar
  72. 72.
    Fritschy JM, Brandner S, Aguzzi A, Koedood M, Luscher B, Mitchell PJ (1996) Brain cell type specificity and gliosis-induced activation of the human cytomegalovirus immediate-early promoter in transgenic mice. J Neurosci 16:2275–2282PubMedGoogle Scholar
  73. 73.
    Fry M, Ferguson AV (2007) The sensory circumventricular organs: brain targets for circulating signals controlling ingestive behavior. Physiol Behav 91:413–423PubMedGoogle Scholar
  74. 74.
    Fu H, Qi Y, Tan M, Cai J, Hu X, Liu Z, Jensen J, Qiu M (2003) Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells. J Comp Neurol 456:237–244PubMedGoogle Scholar
  75. 75.
    Furlan R, Poliani PL, Galbiati F, Bergami A, Grimaldi LM, Comi G, Adorini L, Martino G (1998) Central nervous system delivery of interleukin 4 by a nonreplicative herpes simplex type 1 viral vector ameliorates autoimmune demyelination. Hum Gene Ther 9:2605–2617PubMedGoogle Scholar
  76. 76.
    Fuxe K, Tinner B, Zoli M, Pettersson RF, Baird A, Biagini G, Chadi G, Agnati LF (1996) Computer-assisted mapping of basic fibroblast growth factor immunoreactive nerve cell populations in the rat brain. J Chem Neuroanat 11:13–35PubMedGoogle Scholar
  77. 77.
    Galarza M (2002) Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 25:205–215PubMedGoogle Scholar
  78. 78.
    Galvao RP, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci 28:13368–13383PubMedGoogle Scholar
  79. 79.
    Ganat Y, Soni S, Chacon M, Schwartz ML, Vaccarino FM (2002) Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 112:977–991PubMedGoogle Scholar
  80. 80.
    Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427PubMedGoogle Scholar
  81. 81.
    Ganzler-Odenthal SI, Redies C (1998) Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 18:5415–5425PubMedGoogle Scholar
  82. 82.
    Gattone VH 2nd, Tourkow BA, Trambaugh CM, Yu AC, Whelan S, Phillips CL, Harris PC, Peterson RG (2004) Development of multiorgan pathology in the wpk rat model of polycystic kidney disease. Anat Rec A Discov Mol Cell Evol Biol 277:384–395PubMedGoogle Scholar
  83. 83.
    Geraerts M, Eggermont K, Hernandez-Acosta P, Garcia-Verdugo JM, Baekelandt V, Debyser Z (2006) Lentiviral vectors mediate efficient and stable gene transfer in adult neural stem cells in vivo. Hum Gene Ther 17:635–650PubMedGoogle Scholar
  84. 84.
    Gleason D, Fallon JH, Guerra M, Liu JC, Bryant PJ (2008) Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury. Neuroscience 156:81–88PubMedGoogle Scholar
  85. 85.
    Gonzalez AM, Berry M, Maher PA, Logan A, Baird A (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res 701:201–226PubMedGoogle Scholar
  86. 86.
    Graff CL, Pollack GM (2004) Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab 5:95–108PubMedGoogle Scholar
  87. 87.
    Gregg C, Weiss S (2003) Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci 23:11587–11601PubMedGoogle Scholar
  88. 88.
    Grondona JM, Perez-Martin M, Cifuentes M, Perez J, Jimenez AJ, Perez-Figares JM, Fernandez-Llebrez P (1996) Ependymal denudation, aqueductal obliteration and hydrocephalus after a single injection of neuraminidase into the lateral ventricle of adult rats. J Neuropathol Exp Neurol 55:999–1008PubMedGoogle Scholar
  89. 89.
    Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 15:519–530PubMedGoogle Scholar
  90. 90.
    Hamilton LK, Truong MK, Bednarczyk MR, Aumont A, Fernandes KJ (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164(3):1044–1056Google Scholar
  91. 91.
    Han GP, Li L, Kosugi I, Kawasaki H, Tsuchida T, Miura K, Tsutsui Y (2007) Enhancement of susceptibility of adult mouse brain to cytomegalovirus infection by infusion of epidermal growth factor. J Neurosci Res 85:2981–2990PubMedGoogle Scholar
  92. 92.
    Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P (2005) Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res Brain Res Rev 48:220–233PubMedGoogle Scholar
  93. 93.
    Hauwel M, Furon E, Gasque P (2005) Molecular and cellular insights into the coxsackie–adenovirus receptor: role in cellular interactions in the stem cell niche. Brain Res Brain Res Rev 48:265–272PubMedGoogle Scholar
  94. 94.
    Hayamizu TF, Chan PT, Johanson CE (2001) FGF-2 immunoreactivity in adult rat ependyma and choroid plexus: responses to global forebrain ischemia and intraventricular FGF-2. Neurol Res 23:353–358PubMedGoogle Scholar
  95. 95.
    Hayashi T, Abe K, Sakurai M, Itoyama Y (1998) Inductions of hepatocyte growth factor and its activator in rat brain with permanent middle cerebral artery occlusion. Brain Res 799:311–316PubMedGoogle Scholar
  96. 96.
    Hirano S, Wang X, Suzuki ST (2002) Restricted expression of protocadherin 2A in the developing mouse brain. Brain Res Mol Brain Res 98:119–123PubMedGoogle Scholar
  97. 97.
    Horton BN, Solanki RB, Kulesza P, Ardelt AA (2009) Localization of angiopoietin-1 and Tie2 immunoreactivity in rodent ependyma and adjacent blood vessels suggests functional relationships. J Histochem Cytochem. doi: 10.1369/jhc.2009.954610
  98. 98.
    Huh MS, Todd MA, Picketts DJ (2009) SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda) 24:117–126Google Scholar
  99. 99.
    Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, North A, Heintz N, Omran H (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141PubMedGoogle Scholar
  100. 100.
    Iida Y, Matsuzaki T, Morishima T, Sasano H, Asai K, Sobue K, Takata K (2009) Localization of reversion-induced LIM protein (RIL) in the rat central nervous system. Acta Histochem Cytochem 42:9–14PubMedGoogle Scholar
  101. 101.
    Ikeda T, Xia XY, Xia YX, Ikenoue T, Choi BH (1999) Expression of glial cell line-derived neurotrophic factor in the brain and cerebrospinal fluid of the developing rat. Int J Dev Neurosci 17:681–691PubMedGoogle Scholar
  102. 102.
    Inoue M, Tokusumi Y, Ban H, Shirakura M, Kanaya T, Yoshizaki M, Hironaka T, Nagai Y, Iida A, Hasegawa M (2004) Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 6:1069–1081PubMedGoogle Scholar
  103. 103.
    Iwata T, Hevner RF (2009) Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 51:299–323PubMedGoogle Scholar
  104. 104.
    Jimenez AJ, Tome M, Paez P, Wagner C, Rodriguez S, Fernandez-Llebrez P, Rodriguez EM, Perez-Figares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 60:1105–1119PubMedGoogle Scholar
  105. 105.
    Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10PubMedGoogle Scholar
  106. 106.
    Johanson CE, Duncan JA, Stopa EG, Baird A (2005) Enhanced prospects for drug delivery and brain targeting by the choroid plexus–CSF route. Pharm Res 22:1011–1037PubMedGoogle Scholar
  107. 107.
    Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34PubMedGoogle Scholar
  108. 108.
    Joly JS, Osorio J, Alunni A, Auger H, Kano S, Retaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524PubMedGoogle Scholar
  109. 109.
    Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1, 2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946PubMedGoogle Scholar
  110. 110.
    Kappes DJ, Lawrence DM, Vaughn MM, Dave VP, Belman AR, Rall GF (2000) Protection of CD3 delta knockout mice from lymphocytic choriomeningitis virus-induced immunopathology: implications for viral neuroinvasion. Virology 269:248–256PubMedGoogle Scholar
  111. 111.
    Karpowicz P, Willaime-Morawek S, Balenci L, DeVeale B, Inoue T, van der Kooy D (2009) E-Cadherin regulates neural stem cell self-renewal. J Neurosci 29:3885–3896PubMedGoogle Scholar
  112. 112.
    Kazanis I (2009) The subependymal zone neurogenic niche: a beating heart in the centre of the brain: How plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain 132(Pt 11):2909–2921Google Scholar
  113. 113.
    Kesari S, Lasner TM, Balsara KR, Randazzo BP, Lee VM, Trojanowski JQ, Fraser NW (1998) A neuroattenuated ICP34.5-deficient herpes simplex virus type 1 replicates in ependymal cells of the murine central nervous system. J Gen Virol 79(Pt 3):525–536PubMedGoogle Scholar
  114. 114.
    Kim H, Moon C, Kim J, Ahn M, Hyun JW, Park JW, Kim SH, Kim S, Shin T (2007) Increased phosphorylation of caveolin-1 in the spinal cord of irradiated rats. J Vet Sci 8:323–327PubMedGoogle Scholar
  115. 115.
    Kleinschmidt-DeMasters BK, Amlie-Lefond C, Gilden DH (1996) The patterns of varicella zoster virus encephalitis. Hum Pathol 27:927–938PubMedGoogle Scholar
  116. 116.
    Kleinschmidt-DeMasters BK, Gilden DH (2001) Varicella-Zoster virus infections of the nervous system: clinical and pathologic correlates. Arch Pathol Lab Med 125:770–780PubMedGoogle Scholar
  117. 117.
    Kobayashi M, Nikami H, Morimatsu M, Saito M (1996) Expression and localization of insulin-regulatable glucose transporter (GLUT4) in rat brain. Neurosci Lett 213:103–106PubMedGoogle Scholar
  118. 118.
    Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, Kawase Y, Suzuki H, Nagashima K, Ikeda K, Motoyama N (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22:2769–2776PubMedGoogle Scholar
  119. 119.
    Kojima A, Tator CH (2000) Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J Neuropathol Exp Neurol 59:687–697PubMedGoogle Scholar
  120. 120.
    Kondo Y, Nakanishi T, Takigawa M, Ogawa N (1999) Immunohistochemical localization of connective tissue growth factor in the rat central nervous system. Brain Res 834:146–151PubMedGoogle Scholar
  121. 121.
    Kosaki K, Ikeda K, Miyakoshi K, Ueno M, Kosaki R, Takahashi D, Tanaka M, Torikata C, Yoshimura Y, Takahashi T (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet A 129A:308–311PubMedGoogle Scholar
  122. 122.
    Kuhn PE, Miller MW (1996) c-neu oncoprotein in developing rostral cerebral cortex: relationship to epidermal growth factor receptor. J Comp Neurol 372:189–203PubMedGoogle Scholar
  123. 123.
    Kunzelmann P, Schroder W, Traub O, Steinhauser C, Dermietzel R, Willecke K (1999) Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25:111–119PubMedGoogle Scholar
  124. 124.
    Kuo CT, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan LY, Jan YN (2006) Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127:1253–1264PubMedGoogle Scholar
  125. 125.
    Kurian KM, Jones DT, Marsden F, Openshaw SW, Pearson DM, Ichimura K, Collins VP (2008) Genome-wide analysis of subependymomas shows underlying chromosomal copy number changes involving chromosomes 6, 7, 8 and 14 in a proportion of cases. Brain Pathol 18:469–473PubMedGoogle Scholar
  126. 126.
    Lazarov NE, Schmidt U, Wanner I, Pilgrim C (1998) Mapping of D1 dopamine receptor mRNA by non-radioactive in situ hybridization. Histochem Cell Biol 109:271–279PubMedGoogle Scholar
  127. 127.
    Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB (2008) Mutations in Hydin impair ciliary motility in mice. J Cell Biol 180:633–643PubMedGoogle Scholar
  128. 128.
    Lee L, Campagna DR, Pinkus JL, Mulhern H, Wyatt TA, Sisson JH, Pavlik JA, Pinkus GS, Fleming MD (2008) Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol 28:949–957PubMedGoogle Scholar
  129. 129.
    Lehman NL (2008) Central nervous system tumors with ependymal features: a broadened spectrum of primarily ependymal differentiation? J Neuropathol Exp Neurol 67:177–188PubMedGoogle Scholar
  130. 130.
    Lehmann GL, Gradilone SA, Marinelli RA (2004) Aquaporin water channels in central nervous system. Curr Neurovasc Res 1:293–303PubMedGoogle Scholar
  131. 131.
    Lehtolainen P, Tyynela K, Kannasto J, Airenne KJ, Yla-Herttuala S (2002) Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Ther 9:1693–1699PubMedGoogle Scholar
  132. 132.
    Leonhardt H, Desaga U (1975) Recent observations on ependyma and subependymal basement membranes. Acta Neurochir (Wien) 31:153–159Google Scholar
  133. 133.
    Li AJ, Oomura Y, Sasaki K, Suzuki K, Tooyama I, Hanai K, Kimura H, Hori T (1998) A single pre-training glucose injection induces memory facilitation in rodents performing various tasks: contribution of acidic fibroblast growth factor. Neuroscience 85:785–794PubMedGoogle Scholar
  134. 134.
    Li X, Kong H, Wu W, Xiao M, Sun X, Hu G (2009) Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience 162:67–77PubMedGoogle Scholar
  135. 135.
    Li YC, Bai WZ, Hashikawa T (2007) Regionally varying F-actin network in the apical cytoplasm of ependymocytes. Neurosci Res 57:522–530PubMedGoogle Scholar
  136. 136.
    Li YC, Bai WZ, Sakai K, Hashikawa T (2009) Fluorescence and electron microscopic localization of F-actin in the ependymocytes. J Histochem Cytochem 57:741–751PubMedGoogle Scholar
  137. 137.
    Liebl DJ, Huang W, Young W, Parada LF (2001) Regulation of Trk receptors following contusion of the rat spinal cord. Exp Neurol 167:15–26PubMedGoogle Scholar
  138. 138.
    Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726PubMedGoogle Scholar
  139. 139.
    Ling EA, Kaur C, Lu J (1998) Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech 41:43–56PubMedGoogle Scholar
  140. 140.
    Lippoldt A, Jansson A, Kniesel U, Andbjer B, Andersson A, Wolburg H, Fuxe K, Haller H (2000) Phorbol ester induced changes in tight and adherens junctions in the choroid plexus epithelium and in the ependyma. Brain Res 854:197–206PubMedGoogle Scholar
  141. 141.
    Liu G, Martins IH, Chiorini JA, Davidson BL (2005) Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther 12:1503–1508PubMedGoogle Scholar
  142. 142.
    Ludlow M, Duprex WP, Cosby SL, Allen IV, McQuaid S (2008) Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathol Appl Neurobiol 34:424–434PubMedGoogle Scholar
  143. 143.
    Luo J, Shook BA, Daniels SB, Conover JC (2008) Subventricular zone-mediated ependyma repair in the adult mammalian brain. J Neurosci 28:3804–3813PubMedGoogle Scholar
  144. 144.
    Ma T, Frigeri A, Hasegawa H, Verkman AS (1994) Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem 269:21845–21849PubMedGoogle Scholar
  145. 145.
    Macaulay N, Zeuthen T (2009) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience. doi: 10.1016/j.neuroscience.2009.09.016
  146. 146.
    Mackenzie B, Schafer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H (2003) Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem 278:23720–23730PubMedGoogle Scholar
  147. 147.
    Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205:491–501PubMedGoogle Scholar
  148. 148.
    Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21:13–24PubMedGoogle Scholar
  149. 149.
    Marichal N, Garcia G, Radmilovich M, Trujillo-Cenoz O, Russo RE (2009) Enigmatic central canal contacting cells: immature neurons in “standby mode”? J Neurosci 29:10010–10024PubMedGoogle Scholar
  150. 150.
    Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, Kleinman JE, Weinberger DR (2003) Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116:127–137PubMedGoogle Scholar
  151. 151.
    McQuaid S, Cosby SL (2002) An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82:403–409PubMedGoogle Scholar
  152. 152.
    Meiniel A (2007) The secretory ependymal cells of the subcommissural organ: which role in hydrocephalus? Int J Biochem Cell Biol 39:463–468PubMedGoogle Scholar
  153. 153.
    Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451:170–188PubMedGoogle Scholar
  154. 154.
    Michaloudi HC, Papadopoulos GC (1996) Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS. J Anat 189(Pt 2):273–283PubMedGoogle Scholar
  155. 155.
    Milhorat TH, Kotzen RM, Anzil AP (1994) Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80:716–722PubMedGoogle Scholar
  156. 156.
    Millward JM, Caruso M, Campbell IL, Gauldie J, Owens T (2007) IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system. J Immunol 178:8175–8182PubMedGoogle Scholar
  157. 157.
    Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:C529–C537PubMedGoogle Scholar
  158. 158.
    Mobasheri A, Marples D, Young IS, Floyd RV, Moskaluk CA, Frigeri A (2007) Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels (Austin) 1:29–38Google Scholar
  159. 159.
    Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14PubMedGoogle Scholar
  160. 160.
    Moreno-Manzano V, Rodriguez-Jimenez FJ, Garcia-Rosello M, Lainez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sanchez-Puelles JM, Stojkovic M (2009) Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 27:733–743PubMedGoogle Scholar
  161. 161.
    Morest DK, Silver J (2003) Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How do they get where they are going? Glia 43:6–18PubMedGoogle Scholar
  162. 162.
    Morshead CM, van der Kooy D (2001) A new ‘spin’ on neural stem cells? Curr Opin Neurobiol 11:59–65PubMedGoogle Scholar
  163. 163.
    Murcia CL, Woychik RP (2001) Expression of Pcdh15 in the inner ear, nervous system and various epithelia of the developing embryo. Mech Dev 105:163–166PubMedGoogle Scholar
  164. 164.
    Nakamura Y, Sato K (1993) Role of disturbance of ependymal ciliary movement in development of hydrocephalus in rats. Childs Nerv Syst 9:65–71PubMedGoogle Scholar
  165. 165.
    Nelson DJ, Wright EM (1974) The distribution, activity, and function of the cilia in the frog brain. J Physiol 243:63–78PubMedGoogle Scholar
  166. 166.
    Nesic O, Lee J, Unabia GC, Johnson K, Ye Z, Vergara L, Hulsebosch CE, Perez-Polo JR (2008) Aquaporin 1—a novel player in spinal cord injury. J Neurochem 105:628–640PubMedGoogle Scholar
  167. 167.
    Nguyen T, Chin WC, O’Brien JA, Verdugo P, Berger AJ (2001) Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol 531:131–140PubMedGoogle Scholar
  168. 168.
    Nicchia GP, Rossi A, Nudel U, Svelto M, Frigeri A (2008) Dystrophin-dependent and -independent AQP4 pools are expressed in the mouse brain. Glia 56:869–876PubMedGoogle Scholar
  169. 169.
    Nico B, Corsi P, Ria R, Crivellato E, Vacca A, Roccaro AM, Mangieri D, Ribatti D, Roncali L (2006) Increased matrix-metalloproteinase-2 and matrix-metalloproteinase-9 expression in the brain of dystrophic mdx mouse. Neuroscience 140:835–848PubMedGoogle Scholar
  170. 170.
    Nico B, Mangieri D, De Luca A, Corsi P, Benagiano V, Tamma R, Annese T, Longo V, Crivellato E, Ribatti D (2009) Nerve growth factor and its receptors TrkA and p75 are upregulated in the brain of mdx dystrophic mouse. Neuroscience 161:1057–1066PubMedGoogle Scholar
  171. 171.
    Nishibori M, Nakaya N, Tahara A, Kawabata M, Mori S, Saeki K (1996) Presence of macrophage migration inhibitory factor (MIF) in ependyma, astrocytes and neurons in the bovine brain. Neurosci Lett 213:193–196PubMedGoogle Scholar
  172. 172.
    Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S (2003) Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 83:1211–1222PubMedGoogle Scholar
  173. 173.
    Ochalski PA, Frankenstein UN, Hertzberg EL, Nagy JI (1997) Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neuroscience 76:931–945PubMedGoogle Scholar
  174. 174.
    Ogata A, Nishihira J, Suzuki T, Nagashima K, Tashiro K (1998) Identification of macrophage migration inhibitory factor mRNA expression in neural cells of the rat brain by in situ hybridization. Neurosci Lett 246:173–177PubMedGoogle Scholar
  175. 175.
    Ohtoshi A (2008) Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene. Cerebrospinal Fluid Res 5:16PubMedGoogle Scholar
  176. 176.
    Oomura Y, Sasaki K, Suzuki K, Muto T, Li AJ, Ogita Z, Hanai K, Tooyama I, Kimura H, Yanaihara N (1992) A new brain glucosensor and its physiological significance. Am J Clin Nutr 55:278S–282SPubMedGoogle Scholar
  177. 177.
    Oshio K, Binder DK, Yang B, Schecter S, Verkman AS, Manley GT (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127:685–693PubMedGoogle Scholar
  178. 178.
    Paez P, Batiz LF, Roales-Bujan R, Rodriguez-Perez LM, Rodriguez S, Jimenez AJ, Rodriguez EM, Perez-Figares JM (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092PubMedGoogle Scholar
  179. 179.
    Palm T, Figarella-Branger D, Chapon F, Lacroix C, Gray F, Scaravilli F, Ellison DW, Salmon I, Vikkula M, Godfraind C (2009) Expression profiling of ependymomas unravels localization and tumor grade-specific tumorigenesis. Cancer 115:3955–3968PubMedGoogle Scholar
  180. 180.
    Pellerin L, Bergersen LH, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 79:55–64PubMedGoogle Scholar
  181. 181.
    Perez-Figares JM, Jimenez AJ, Rodriguez EM (2001) Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech 52:591–607PubMedGoogle Scholar
  182. 182.
    Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736PubMedGoogle Scholar
  183. 183.
    Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14PubMedGoogle Scholar
  184. 184.
    Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627PubMedGoogle Scholar
  185. 185.
    Plakhov IV, Arlund EE, Aoki C, Reiss CS (1995) The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 209:257–262PubMedGoogle Scholar
  186. 186.
    Poppleton H, Gilbertson RJ (2007) Stem cells of ependymoma. Br J Cancer 96:6–10PubMedGoogle Scholar
  187. 187.
    Praetorius J (2007) Water and solute secretion by the choroid plexus. Pflugers Arch 454:1–18PubMedGoogle Scholar
  188. 188.
    Prochnow N, Dermietzel R (2008) Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130:71–77PubMedGoogle Scholar
  189. 189.
    Prothmann C, Wellard J, Berger J, Hamprecht B, Verleysdonk S (2001) Primary cultures as a model for studying ependymal functions: glycogen metabolism in ependymal cells. Brain Res 920:74–83PubMedGoogle Scholar
  190. 190.
    Pruss H, Derst C, Marinc C, Wenzel M, Veh RW (2008) Expression of Kir3.3 potassium channel subunits in supraependymal axons. Neurosci Lett 445:89–93PubMedGoogle Scholar
  191. 191.
    Raimondi AJ, Clark SJ, McLone DG (1976) Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg 45:66–77PubMedGoogle Scholar
  192. 192.
    Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388:265–292PubMedGoogle Scholar
  193. 193.
    Rash JE, Yasumura T, Dudek FE (1998) Ultrastructure, histological distribution, and freeze-fracture immunocytochemistry of gap junctions in rat brain and spinal cord. Cell Biol Int 22:731–749PubMedGoogle Scholar
  194. 194.
    Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986PubMedGoogle Scholar
  195. 195.
    Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Sestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10:819–827PubMedGoogle Scholar
  196. 196.
    Redies C, Takeichi M (1996) Cadherins in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev Biol 180:413–423PubMedGoogle Scholar
  197. 197.
    Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695–1716PubMedGoogle Scholar
  198. 198.
    Reuter JD, Gomez DL, Wilson JH, Van Den Pol AN (2004) Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain. J Virol 78:1473–1487PubMedGoogle Scholar
  199. 199.
    Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou L, Little MT, Malakhova OA, Sipe JC, Orkin SH, Zhang DE (2002) Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev 16:2207–2212PubMedGoogle Scholar
  200. 200.
    Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, Yan AT, Cwirla SE, Grindstaff KK (2008) Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155:423–438PubMedGoogle Scholar
  201. 201.
    Robinson SR, Noone DF, O’Dowd BS (1996) Ependymocytes and supra-ependymal axons in rat brain contain glutamate. Glia 17:345–348PubMedGoogle Scholar
  202. 202.
    Rodriguez EM, Oksche A, Montecinos H (2001) Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Tech 52:573–590PubMedGoogle Scholar
  203. 203.
    Rodriguez P, Bouchaud C (1996) The supra-ependymal innervation is not responsible for the repression of tight junctions in the rat cerebral ependyma. Neurobiology (Bp) 4:185–201Google Scholar
  204. 204.
    Rodriguez-Perez LM, Perez-Martin M, Jimenez AJ, Fernandez-Llebrez P (2003) Immunocytochemical characterisation of the wall of the bovine lateral ventricle. Cell Tissue Res 314:325–335PubMedGoogle Scholar
  205. 205.
    Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss IJ (2002) Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 22:6298–6305PubMedGoogle Scholar
  206. 206.
    Sarnat HB (1992) Regional differentiation of the human fetal ependyma: immunocytochemical markers. J Neuropathol Exp Neurol 51:58–75PubMedGoogle Scholar
  207. 207.
    Sarnat HB (1992) Role of human fetal ependyma. Pediatr Neurol 8:163–178PubMedGoogle Scholar
  208. 208.
    Sarnat HB (1995) Ependymal reactions to injury. A review. J Neuropathol Exp Neurol 54:1–15PubMedGoogle Scholar
  209. 209.
    Sarnat HB (1998) Histochemistry and immunocytochemistry of the developing ependyma and choroid plexus. Microsc Res Tech 41:14–28PubMedGoogle Scholar
  210. 210.
    Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632PubMedGoogle Scholar
  211. 211.
    Schipper HM, Agarwal-Mawal A, Paudel HK (1999) The topography and subcellular distribution of mitogen-activated protein kinase kinase1 (MEK1) in adult rat brain and differentiating PC12 cells. Neuroscience 93:585–595PubMedGoogle Scholar
  212. 212.
    Schober A, Bottner M, Strelau J, Kinscherf R, Bonaterra GA, Barth M, Schilling L, Fairlie WD, Breit SN, Unsicker K (2001) Expression of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol 439:32–45PubMedGoogle Scholar
  213. 213.
    Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol 420:211–232PubMedGoogle Scholar
  214. 214.
    Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions. Cell Stem Cell 3:289–300PubMedGoogle Scholar
  215. 215.
    Shin I, Kim HJ, Lee JE, Gye MC (2006) Aquaporin7 expression during perinatal development of mouse brain. Neurosci Lett 409:106–111PubMedGoogle Scholar
  216. 216.
    Shin T, Kim H, Jin JK, Moon C, Ahn M, Tanuma N, Matsumoto Y (2005) Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 165:11–20PubMedGoogle Scholar
  217. 217.
    Silva-Alvarez C, Carrasco M, Balmaceda-Aguilera C, Pastor P, Garcia Mde L, Reinicke K, Aguayo L, Molina B, Cifuentes M, Medina R, Nualart F (2005) Ependymal cell differentiation and GLUT1 expression is a synchronous process in the ventricular wall. Neurochem Res 30:1227–1236PubMedGoogle Scholar
  218. 218.
    Simpson KL, Fisher TM, Waterhouse BD, Lin RC (1998) Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat. J Comp Neurol 399:61–72PubMedGoogle Scholar
  219. 219.
    Skipor J, Thiery JC (2008) The choroid plexus–cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol Exp (Wars) 68:414–428Google Scholar
  220. 220.
    Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev 47:245–259PubMedGoogle Scholar
  221. 221.
    Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180PubMedGoogle Scholar
  222. 222.
    Soria JM, Taglialatela P, Gil-Perotin S, Galli R, Gritti A, Verdugo JM, Bertuzzi S (2004) Defective postnatal neurogenesis and disorganization of the rostral migratory stream in absence of the Vax1 homeobox gene. J Neurosci 24:11171–11181PubMedGoogle Scholar
  223. 223.
    Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18PubMedGoogle Scholar
  224. 224.
    Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B (2007) Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 8:2PubMedGoogle Scholar
  225. 225.
    Swan MC, Najlerahim AR, Bennett JP (1997) Expression of serotonin transporter mRNA in rat brain: presence in neuronal and non-neuronal cells and effect of paroxetine. J Chem Neuroanat 13:71–76PubMedGoogle Scholar
  226. 226.
    Szabo A, Jancsik V, Mornet D, Kalman M (2004) Immunofluorescence mapping of dystrophin in the rat brain: astrocytes contain the splice variant Dp71f, but this is confined to subpopulations. Anat Embryol (Berl) 208:463–477Google Scholar
  227. 227.
    Tada T, Nguyen JB, Hitoshi Y, Watson NP, Dunn JF, Ohara S, Nagano S, Kosai K, Israel MA (2005) Diffuse encephaloventriculitis and substantial leukoencephalopathy after intraventricular administration of recombinant adenovirus. Neurol Res 27:378–386PubMedGoogle Scholar
  228. 228.
    Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43PubMedGoogle Scholar
  229. 229.
    Takahashi M, Yamada T, Nakajima S, Nakajima K, Yamamoto T, Okada H (1995) The substantia nigra is a major target for neurovirulent influenza A virus. J Exp Med 181:2161–2169PubMedGoogle Scholar
  230. 230.
    Takaki E, Fujimoto M, Nakahari T, Yonemura S, Miyata Y, Hayashida N, Yamamoto K, Vallee RB, Mikuriya T, Sugahara K, Yamashita H, Inouye S, Nakai A (2007) Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J Biol Chem 282:37285–37292PubMedGoogle Scholar
  231. 231.
    Takano T, Takikita S, Shimada M (1999) Experimental mumps virus-induced hydrocephalus: viral neurotropism and neuronal maturity. Neuroreport 10:2215–2221PubMedCrossRefGoogle Scholar
  232. 232.
    Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10:713–723PubMedGoogle Scholar
  233. 233.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335PubMedGoogle Scholar
  234. 234.
    Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M (2004) Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 6(Suppl 1):S212–S222PubMedGoogle Scholar
  235. 235.
    Tome M, Moreira E, Perez-Figares JM, Jimenez AJ (2007) Presence of D1- and D2-like dopamine receptors in the rat, mouse and bovine multiciliated ependyma. J Neural Transm 114:983–994PubMedGoogle Scholar
  236. 236.
    Tonchev AB, Yamashima T, Guo J, Chaldakov GN, Takakura N (2007) Expression of angiogenic and neurotrophic factors in the progenitor cell niche of adult monkey subventricular zone. Neuroscience 144:1425–1435PubMedGoogle Scholar
  237. 237.
    Torikata C, Kijimoto C, Koto M (1991) Ultrastructure of respiratory cilia of WIC-Hyd male rats. An animal model for human immotile cilia syndrome. Am J Pathol 138:341–347PubMedGoogle Scholar
  238. 238.
    Torres-Velez FJ, Shieh WJ, Rollin PE, Morken T, Brown C, Ksiazek TG, Zaki SR (2008) Histopathologic and immunohistochemical characterization of Nipah virus infection in the guinea pig. Vet Pathol 45:576–585PubMedGoogle Scholar
  239. 239.
    Town T, Breunig JJ, Sarkisian MR, Spilianakis C, Ayoub AE, Liu X, Ferrandino AF, Gallagher AR, Li MO, Rakic P, Flavell RA (2008) The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci USA 105:2853–2858PubMedGoogle Scholar
  240. 240.
    Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587PubMedGoogle Scholar
  241. 241.
    Ulfig N, Chan WY (2004) Expression patterns of PSA-NCAM in the human ganglionic eminence and its vicinity: role of PSA-NCAM in neuronal migration and axonal growth? Cells Tissues Organs 177:229–236PubMedGoogle Scholar
  242. 242.
    Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:39–53Google Scholar
  243. 243.
    Venero JL, Vizuete ML, Ilundain AA, Machado A, Echevarria M, Cano J (1999) Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience 94:239–250PubMedGoogle Scholar
  244. 244.
    Verleysdonk S, Hamprecht B, Rapp M, Wellard J (2004) Uptake and metabolism of serotonin by ependymal primary cultures. Neurochem Res 29:1739–1747PubMedGoogle Scholar
  245. 245.
    Verleysdonk S, Hirschner W, Wellard J, Rapp M, de los Angeles Garcia M, Nualart F, Hamprecht B (2004) Regulation by insulin and insulin-like growth factor of 2-deoxyglucose uptake in primary ependymal cell cultures. Neurochem Res 29:127–134PubMedGoogle Scholar
  246. 246.
    Verleysdonk S, Kistner S, Pfeiffer-Guglielmi B, Wellard J, Lupescu A, Laske J, Lang F, Rapp M, Hamprecht B (2005) Glycogen metabolism in rat ependymal primary cultures: regulation by serotonin. Brain Res 1060:89–99PubMedGoogle Scholar
  247. 247.
    Vestergaard E (1964) Morphological changes in the lateral ventricles of the mouse brain during growth. Acta Anat (Basel) 59:315–326Google Scholar
  248. 248.
    Vigh B, Manzano e Silva MJ, Frank CL, Vincze C, Czirok SJ, Szabo A, Lukats A, Szel A (2004) The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopathol 19:607–628PubMedGoogle Scholar
  249. 249.
    Vigh B, Vigh-Teichmann I (1998) Actual problems of the cerebrospinal fluid-contacting neurons. Microsc Res Tech 41:57–83PubMedGoogle Scholar
  250. 250.
    Vio K, Rodriguez S, Navarrete EH, Perez-Figares JM, Jimenez AJ, Rodriguez EM (2000) Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner’s fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res 135:41–52PubMedGoogle Scholar
  251. 251.
    Vitalis T, Fouquet C, Alvarez C, Seif I, Price D, Gaspar P, Cases O (2002) Developmental expression of monoamine oxidases A and B in the central and peripheral nervous systems of the mouse. J Comp Neurol 442:331–347PubMedGoogle Scholar
  252. 252.
    Vives V, Alonso G, Solal AC, Joubert D, Legraverend C (2003) Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 457:404–419PubMedGoogle Scholar
  253. 253.
    von Maltzahn J, Kreuzberg MM, Matern G, Euwens C, Hoher T, Worsdorfer P, Willecke K (2009) C-terminal tagging with eGFP yields new insights into expression of connexin45 but prevents rescue of embryonic lethal connexin45-deficient mice. Eur J Cell Biol 88:481–494Google Scholar
  254. 254.
    Wagner C, Batiz LF, Rodriguez S, Jimenez AJ, Paez P, Tome M, Perez-Figares JM, Rodriguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040PubMedGoogle Scholar
  255. 255.
    Wang C, Wang CM, Clark KR, Sferra TJ (2003) Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Ther 10:1528–1534PubMedGoogle Scholar
  256. 256.
    Wang LX, Yin RX, Sun JB (2008) Effect of Tongxinluo on nestin and vascular endothehal growth factor mRNA expression in rat brain tissue after cerebral ischemia-reperfusion injury. Nan Fang Yi Ke Da Xue Xue Bao 28:2131–2135PubMedGoogle Scholar
  257. 257.
    Watson DJ, Passini MA, Wolfe JH (2005) Transduction of the choroid plexus and ependyma in neonatal mouse brain by vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus type 5 vectors. Hum Gene Ther 16:49–56PubMedGoogle Scholar
  258. 258.
    Webster H, Astrom KE (2009) Gliogenesis: historical perspectives, 1839–1985. Adv Anat Embryol Cell Biol 202:1–109PubMedGoogle Scholar
  259. 259.
    Weinhold B, Seidenfaden R, Rockle I, Muhlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H (2005) Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem 280:42971–42977PubMedGoogle Scholar
  260. 260.
    Werner-Keiss N, Garten W, Richt JA, Porombka D, Algermissen D, Herzog S, Baumgartner W, Herden C (2008) Restricted expression of Borna disease virus glycoprotein in brains of experimentally infected Lewis rats. Neuropathol Appl Neurobiol 34:590–602PubMedGoogle Scholar
  261. 261.
    Westergaard E (1969) The cerebral ventricles of the rat during growth. Acta Anat (Basel) 74:405–423Google Scholar
  262. 262.
    Wilson GR, Tan JT, Brody KM, Taylor JM, Delatycki MB, Lockhart PJ (2009) Expression and localization of the Parkin co-regulated gene in mouse CNS suggests a role in ependymal cilia function. Neurosci Lett 460:97–101PubMedGoogle Scholar
  263. 263.
    Wodarczyk C, Rowe I, Chiaravalli M, Pema M, Qian F, Boletta A (2009) A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus. PLoS One 4:e7137PubMedGoogle Scholar
  264. 264.
    Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC, Wang LF, Ansford AJ, Tannenberg A (2009) Human Hendra virus infection causes acute and relapsing encephalitis. Neuropathol Appl Neurobiol 35:296–305PubMedGoogle Scholar
  265. 265.
    Woollam DH, Millen JW (1953) Anatomical considerations in the pathology of stenosis of the cerebral aqueduct. Brain 76:104–112PubMedGoogle Scholar
  266. 266.
    Wozniak W (1999) Ependymal cells and astrocytes generate neurons. Folia Morphol (Warsz) 58:7–11Google Scholar
  267. 267.
    Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192:251–264PubMedGoogle Scholar
  268. 268.
    Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378:135–157PubMedGoogle Scholar
  269. 269.
    Ye X, Carp RI (2002) Increase of acidic fibroblast growth factor in the brains of hamsters infected with either 263K or 139H strains of scrapie. J Mol Neurosci 18:179–188PubMedGoogle Scholar
  270. 270.
    You H, Kim YI, Im SY, Suh-Kim H, Paek SH, Park SH, Kim DG, Jung HW (2005) Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neurooncol 74:1–8PubMedGoogle Scholar
  271. 271.
    Yu S, Tooyama I, Ding WG, Kitasato H, Kimura H (1995) Immunohistochemical localization of glucose transporters (GLUT1 and GLUT3) in the rat hypothalamus. Obes Res 3(Suppl 5):753S–776SPubMedGoogle Scholar
  272. 272.
    Zahs KR (1998) Heterotypic coupling between glial cells of the mammalian central nervous system. Glia 24:85–96PubMedGoogle Scholar
  273. 273.
    Zariwala MA, Knowles MR, Omran H (2007) Genetic defects in ciliary structure and function. Annu Rev Physiol 69:423–450PubMedGoogle Scholar
  274. 274.
    Zhang RL, Zhang ZG, Wang Y, LeTourneau Y, Liu XS, Zhang X, Gregg SR, Wang L, Chopp M (2007) Stroke induces ependymal cell transformation into radial glia in the subventricular zone of the adult rodent brain. J Cereb Blood Flow Metab 27:1201–1212PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of PathologyUniversity of ManitobaWinnipegCanada

Personalised recommendations