Advertisement

Acta Neuropathologica

, Volume 119, Issue 3, pp 325–334 | Cite as

Heterozygous germ-line mutations in the NBN gene predispose to medulloblastoma in pediatric patients

  • Elżbieta Ciara
  • Dorota Piekutowska-Abramczuk
  • Ewa Popowska
  • Wiesława Grajkowska
  • Sławomir Barszcz
  • Danuta Perek
  • Bożenna Dembowska-Bagińska
  • Marta Perek-Polnik
  • Ewa Kowalewska
  • Aneta Czajńska
  • Małgorzata Syczewska
  • Kamila Czornak
  • Małgorzata Krajewska-Walasek
  • Marcin Roszkowski
  • Krystyna H. ChrzanowskaEmail author
Original Article

Abstract

The NBN (NBS1) gene belongs to a group of double-strand break repair genes. Mutations in any of these genes cause genome instability syndromes and contribute to carcinogenesis. NBN gene mutations cause increased tumor risk in Nijmegen breakage syndrome (NBS) homozygotes as well as in NBN heterozygotes. NBS patients develop different types of malignancies; among solid tumors, medulloblastoma (MB), an embryonal tumor of the cerebellum, has been reported most frequently. The majority of medulloblastomas occur sporadically, some of them manifest within familial cancer syndromes. Several signaling pathways are known to be engaged in hereditary and sporadic MB. The aim of our study was to identify mutations in selected exons of the NBN gene and to determine the frequency of the most common NBN gene mutations in pediatric patients with different types of medulloblastoma. We screened a total of 104 patients with MB and identified 7 heterozygous carriers (6.7%) of two different germ-line mutations of NBN gene; all of them had classic MB. Our results indicate that heterozygous carriers of the germ-line NBN gene mutations (c.511A>G and c.657_661del5) may exhibit increased susceptibility to developing MB. The risk of medulloblastoma is estimated to be 3.0 (for c.511A>G) and 4.86 (for c.657_661del5) times higher than in the general Polish population (p < 0.05). These results suggest that heterozygous NBN germ-line mutations may contribute to the etiology of medulloblastoma.

Keywords

NBN gene Germ-line mutations Medulloblastoma Cancer risk 

Notes

Acknowledgments

We are indebted to all of the patients and parents for their participation in this study. We would like to thank other collaborators from the Children’s Memorial Health Institute, Warsaw, i.e. the clinicians from the Department of Oncology: Agnieszka Brożyna, Iwona Daniluk, Monika Drogosiewicz, Iwona Filipek, Olga Rutynowska-Pronicka, Anna Wakulińska, and from the Department of Neurosurgery: Paweł Daszkiewicz, Krzysztof Drabik, Sławomir Przasnek, for collecting blood samples. We are also grateful to Mrs. Teresa Wojtasiak from the Department of Medical Genetics, CMHI, for excellent technical assistance. This study was supported by the Polish Committee for Scientific Research, Grant No. PBZ-KBN-090/P05/04-17 and the Children’s Memorial Health Institute, Grant No. S112/2009.

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. 1.
    Abner CW, McKinnon PJ (2004) The DNA double-strand break response in the nervous system. DNA Repair 3:1141–1147CrossRefPubMedGoogle Scholar
  2. 2.
    Aldosari N, Bigner SH, Burger PC et al (2002) MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 126(5):540–544PubMedGoogle Scholar
  3. 3.
    Badiali M, Iolascon A, Loda M et al (1993) p53 gene mutations in medulloblastoma. Immunohistochemistry, gel shift analysis, and sequencing. Diagn Mol Pathol 2(1):23–28PubMedGoogle Scholar
  4. 4.
    Bakhshi S, Cerosaletti KM, Concannon P et al (2003) Medulloblastoma with adverse reaction to radiation therapy in Nijmegen breakage syndrome. J Pediatr Hematol Oncol 25(3):248–251CrossRefPubMedGoogle Scholar
  5. 5.
    Baylin S (2001) DNA methylation and epigenetic mechanisms of carcinogenesis. Dev Biol (Basel) 106:85–87 (discussion 143–160)Google Scholar
  6. 6.
    Becker E, Meyer V, Madaoui H, Guerois R (2006) Detection of a tandem BRCT in Nbs1 and Xrs2 with functional implications in the DNA damage response. Bioinformatics 22(11):1289–1292CrossRefPubMedGoogle Scholar
  7. 7.
    Bigner SH, Mark J, Friedman HS, Biegel JA, Bigner DD (1988) Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet Cytogenet 30:91–101CrossRefPubMedGoogle Scholar
  8. 8.
    Bogdanova N, Feshchenko S, Schürmann P et al (2008) Nijmegen breakage syndrome mutations and risk of breast cancer. Int J Cancer 122:802–806CrossRefPubMedGoogle Scholar
  9. 9.
    Bürger S, Schindler D, Fehn M et al (2006) Radiation-induced DNA damage and repair in peripheral blood mononuclear cells from Nijmegen breakage syndrome patients and carriers assessed by the Comet assay. Environ Mol Mutagen 47(4):260–270CrossRefPubMedGoogle Scholar
  10. 10.
    Carney JP, Maser RS, Olivares H et al (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486CrossRefPubMedGoogle Scholar
  11. 11.
    Chang CH, Housepian EM, Herbert C (1969) An operative staging system and a megavoltage radiotherapic technique for cerebellar medulloblastomas. Radiology 93:1351–1359PubMedGoogle Scholar
  12. 12.
    Chrzanowska KH, Piekutowska-Abramczuk D, Popowska E et al (2006) Carrier frequency of mutation 657del5 in the NBS1 gene in a population of Polish pediatric patients with sporadic lymphoid malignancies. Int J Cancer 118:1269–1274CrossRefPubMedGoogle Scholar
  13. 13.
    Cybulski C, Górski B, Debniak T et al (2004) NBS1 is a prostate cancer susceptibility gene. Cancer Res 64:1215–1219CrossRefPubMedGoogle Scholar
  14. 14.
    Dallas PB, Terry PA, Kees UR (2005) Genomic deletions in cell lines derived from primitive neuroectodermal tumors of the central nervous system. Cancer Genet Cytogenet 159(2):105–113CrossRefPubMedGoogle Scholar
  15. 15.
    Distel L, Neubauer S, Varon R, Holter W, Grabenbauer G (2003) Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med Pediatr Oncol 41(1):44–48CrossRefPubMedGoogle Scholar
  16. 16.
    Dumon-Jones V, Frappart PO, Tong WM et al (2003) Nbn heterozygosity renders mice susceptible to tumor formation and ionizing radiation-induced tumorigenesis. Cancer Res 63(21):7263–7269PubMedGoogle Scholar
  17. 17.
    Frappart PO, Lee Y, Lamont J, McKinnon PJ (2007) BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 26:2732–2742CrossRefPubMedGoogle Scholar
  18. 18.
    Górski B, Debniak T, Masojć B et al (2003) Germline 657del5 mutation in the NBS1 gene in breast cancer patients. Int J Cancer 106:379–381CrossRefPubMedGoogle Scholar
  19. 19.
    Hama S, Matsuura S, Tauchi H et al (2000) Absence of mutations in the NBS1 gene in B-cell malignant lymphoma patients. Anticancer Res 20:1897–1900PubMedGoogle Scholar
  20. 20.
    Hebbring SJ, Fredriksson H, White KA et al (2006) Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15:935–938CrossRefPubMedGoogle Scholar
  21. 21.
    Heikkinen K, Rapakko K, Karppinen SM et al (2006) NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis 27(8):1593–1599CrossRefPubMedGoogle Scholar
  22. 22.
    Hematulin A, Sagan D, Eckardt-Schupp F, Moertl S (2008) NBS1 is required for IGF-1 induced cellular proliferation through the Ras/Raf/MEK/ERK cascade. Cell Signal 20(12):2276–2285CrossRefPubMedGoogle Scholar
  23. 23.
    Hope AJ, Mansur DB, Tu PH, Simpson JR (2006) Metachronous secondary atypical meningioma and anaplastic astrocytoma after postoperative craniospinal irradiation for medulloblastoma. Childs Nerv Syst 22(9):1201–1207CrossRefPubMedGoogle Scholar
  24. 24.
    Huang H, Mahler-Araujo BM, Sankila A et al (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156(2):433–437PubMedGoogle Scholar
  25. 25.
    Huang J, Grotzer MA, Watanabe T et al (2008) Mutations in the Nijmegen breakage syndrome gene in medulloblastomas. Clin Cancer Res 14:4053–4058CrossRefPubMedGoogle Scholar
  26. 26.
    Iijima K, Muranaka C, Kobayashi J et al (2008) NBS1 regulates a novel apoptotic pathway through Bax activation. DNA Repair (Amst) 7(10):1705–1716CrossRefGoogle Scholar
  27. 27.
    Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 10:1068–1070CrossRefGoogle Scholar
  28. 28.
    Kanka C, Brozek I, Skalska B, Siemiatkowska A, Limon J (2007) Germline NBS1 mutations in families with aggregation of Breast and/or ovarian cancer from north-east Poland. Anticancer Res 27:3015–3018PubMedGoogle Scholar
  29. 29.
    Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004) NBS1 and its functional role in the DNA damage response. DNA Repair 3:855–861CrossRefPubMedGoogle Scholar
  30. 30.
    Lindsey JC, Lusher ME, Anderton JA, Gilbertson RJ, Ellison DW, Clifford SC (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 97(2):267–274CrossRefPubMedGoogle Scholar
  31. 31.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMedGoogle Scholar
  32. 32.
    Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11:17–22CrossRefPubMedGoogle Scholar
  33. 33.
    McNeil DE, Coté TR, Clegg L, Rorke LB (2002) Incidence and trends in pediatric malignancies medulloblastoma/primitive neuroectodermal tumor: a SEER update. Surveillance epidemiology and end results. Med Pediatr Oncol 39:190–194CrossRefPubMedGoogle Scholar
  34. 34.
    Mosor M, Ziółkowska I, Pernak-Schwarz M, Januszkiewicz-Lewandowska D, Nowak J (2006) Association of the heterozygous germline I171V mutation of the NBS1 gene with childhood acute lymphoblastic leukemia. Leukemia 20:1454–1456CrossRefPubMedGoogle Scholar
  35. 35.
    Neglia JP, Friedman DL, Yasui Y et al (2001) Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst 93(8):618–629CrossRefPubMedGoogle Scholar
  36. 36.
    Neubauer S, Arutyunyan R, Stumm M et al (2002) Radiosensitivity of ataxia telangiectasia and Nijmegen breakage syndrome homozygotes and heterozygotes as determined by three-color FISH chromosome painting. Radiat Res 157(3):312–321CrossRefPubMedGoogle Scholar
  37. 37.
    Nowak J, Mosor M, Ziółkowska I et al (2008) Heterozygous carriers of the I171V mutation of the NBS1 gene have a significantly increased risk of solid malignant tumours. Eur J Cancer 44:627–630CrossRefPubMedGoogle Scholar
  38. 38.
    Piekutowska-Abramczuk D, Ciara E, Popowska E, et al. (2009) The frequency of NBN molecular variants in pediatric astrocytic tumors. J Neurooncol 22 (Epub ahead). doi: 10.1007/s11060-009-9958-5
  39. 39.
    Raffel C, Jenkins RB, Frederick L et al (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57(5):842–845PubMedGoogle Scholar
  40. 40.
    Rischewski J, Bismarck P, Kabisch H, Janka-Schaub G, Obser T, Schneppenheim R (2000) The common deletion 657del5 in the Nibrin gene is not a major risk factor for B or T cell non-Hodgkin lymphoma in a pediatric population. Leukemia 14:1528–1529CrossRefPubMedGoogle Scholar
  41. 41.
    Santarosa M, Ashworth A (2004) Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochim Biophys Acta 1654(2):105–122PubMedGoogle Scholar
  42. 42.
    Seemanová E, Jarolim P, Seeman P et al (2007) Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst 99(24):1875–1880CrossRefPubMedGoogle Scholar
  43. 43.
    Shimada H, Shimizu K, Mimaki S et al (2004) First case of aplastic anemia in a Japanese child with a homozygous missense mutation in the NBS1 gene (I171V) associated with genomic instability. Hum Genet 115(5):372–376CrossRefPubMedGoogle Scholar
  44. 44.
    Sokolenko AP, Rozanov ME, Mitiushkina NV et al (2007) Founder mutations in early-onset, familial and bilateral breast cancer patients from Russia. Fam Cancer 6:281–286CrossRefPubMedGoogle Scholar
  45. 45.
    Steffen J, Nowakowska D, Niwińska A et al (2006) Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119:472–475CrossRefPubMedGoogle Scholar
  46. 46.
    Steffen J, Varon R, Mosor M, Maneva G et al (2004) Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer 111:67–71CrossRefPubMedGoogle Scholar
  47. 47.
    Tanzarella C, Antoccia A, Spadoni E et al (2003) Chromosome instability and nibrin protein variants in NBS heterozygotes. Eur J Hum Genet 11(4):297–303CrossRefGoogle Scholar
  48. 48.
    Taylor MD, Mainprize TG, Rutka JT, Becker L, Bayani J, Drake JM (2001) Medulloblastoma in a child with Rubenstein-Taybi Syndrome: case report and review of the literature. Pediatr Neurosurg 35:235–238CrossRefPubMedGoogle Scholar
  49. 49.
    Varon R, Reis A, Henze G, von Einsiedel HG, Sperling K, Seeger K (2001) Mutations in the Nijmegen Breakage Syndrome gene (NBS1) in childhood acute lymphoblastic leukemia (ALL). Cancer Res 61:3570–3572PubMedGoogle Scholar
  50. 50.
    Varon R, Seemanova E, Chrzanowska K et al (2000) Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet 8:900–902CrossRefPubMedGoogle Scholar
  51. 51.
    Varon R, Vissinga C, Platzer M et al (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93:467–476CrossRefPubMedGoogle Scholar
  52. 52.
    Watanabe T, Nobusawa S, Lu S, Huang J, Mittelbronn M, Ohgaki H (2009) Mutational inactivation of the Nijmegen Breakage Syndrome gene (NBS1) in glioblastomas is associated with multiple TP53 mutations. J Neuropathol Exp Neurol 68(2):210–215CrossRefPubMedGoogle Scholar
  53. 53.
    Wegner RD, German JJ, Chrzanowska KH, Digweed M, Stumm M (2007) Chromosomal instability syndromes other than ataxia-telangiectasia. In: Ochs HD, Smith CIE, Puck JM (eds) Primary immunodeficiency diseases. A molecular and genetic approach. Oxford University Press, Oxford, pp 427–453Google Scholar
  54. 54.
    Ziólkowska I, Mosor M, Nowak J (2006) Regional distribution of heterozygous 657del5 mutation carriers of the NBS1 gene in Wielkopolska province (Poland). Appl Genet 47:269–272Google Scholar
  55. 55.
    Ziólkowska I, Mosor M, Wierzbicka M, Rydzanicz M, Pernak-Schwarz M, Nowak J (2007) Increased risk of larynx cancer in heterozygous carriers of the I171 V mutation of the NBS1 gene. Cancer Sci 98:1701–1705CrossRefPubMedGoogle Scholar
  56. 56.
    Zurawel RH, Chiappa SA, Allen C, Raffel C (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58(5):896–899PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Elżbieta Ciara
    • 1
  • Dorota Piekutowska-Abramczuk
    • 1
  • Ewa Popowska
    • 1
  • Wiesława Grajkowska
    • 2
  • Sławomir Barszcz
    • 3
  • Danuta Perek
    • 4
  • Bożenna Dembowska-Bagińska
    • 4
  • Marta Perek-Polnik
    • 4
  • Ewa Kowalewska
    • 4
  • Aneta Czajńska
    • 4
  • Małgorzata Syczewska
    • 5
  • Kamila Czornak
    • 1
  • Małgorzata Krajewska-Walasek
    • 1
  • Marcin Roszkowski
    • 3
  • Krystyna H. Chrzanowska
    • 1
    Email author
  1. 1.Department of Medical GeneticsThe Children’s Memorial Health InstituteWarsawPoland
  2. 2.Department of PathologyThe Children’s Memorial Health InstituteWarsawPoland
  3. 3.Department of NeurosurgeryThe Children’s Memorial Health InstituteWarsawPoland
  4. 4.Department of OncologyThe Children’s Memorial Health InstituteWarsawPoland
  5. 5.Department of Pediatric RehabilitationThe Children’s Memorial Health InstituteWarsawPoland

Personalised recommendations