Advertisement

Acta Neuropathologica

, 118:685 | Cite as

Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies

  • Claire Perruchini
  • Frederic Pecorari
  • Jean-Pierre Bourgeois
  • Charles Duyckaerts
  • François Rougeon
  • Pierre LafayeEmail author
Original Paper

Abstract

Camelids produce antibodies made of homodimeric heavy chains, and the antigen-binding region being composed of a single domain called VHH. These VHHs are much smaller than complete IgG. They are also more thermostable and more soluble in water; they should, therefore, diffuse more readily in the tissues. VHHs, expressed in bacteria, are easier to produce than conventional monoclonal antibodies. Because of these special characteristics, these antibody fragments could have interesting developments in immunohistochemistry and in the development of biomarkers. To test the possibility of their use in immunohistochemistry (IHC), we selected the glial fibrillary acidic protein (GFAP), a well-known marker of astrocytes. One alpaca (Lama pacos) was immunized against GFAP. Lymphocytes were isolated; the DNA was extracted; the VHH-coding sequences were selectively amplified. Three VHHs with a high affinity for GFAP and their corresponding mRNA were selected by ribosome display. Large quantities of the recombinant VHHs coupled with different tags were harvested from transfected bacteria. One of them was shown to immunolabel strongly and specifically to GFAP of human astrocytes in tissue sections. The quality of the IHC was comparable or, in some aspects, superior to the quality obtained with conventional IgG. The VHH was shown to diffuse on a longer distance than conventional monoclonal antibodies in fixed cortical tissue: a property that may be useful in immunolabeling of thick sections.

Keywords

Homodimeric antibodies Camel GFAP VHImmunohistochemistry 

Notes

Acknowledgments

We would like to thank the Brainbank GIE Neuro-CEB of Hôpital de la Pitié-Salpétrière for providing human cortical brain tissue. We want also thank Dr Agathe Subtil from Pasteur Institute for the gift of the rabbit anti-His antibodies.

References

  1. 1.
    Achour I, Cavelier P, Tichit M et al (2008) Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J Immunol 181:2001–2009PubMedGoogle Scholar
  2. 2.
    Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526CrossRefPubMedGoogle Scholar
  3. 3.
    Cardoso DF, Nato F, England P et al (2000) Neutralizing human anti crotoxin scFv isolated from a nonimmunized phage library. Scand J Immunol 51:337–344CrossRefPubMedGoogle Scholar
  4. 4.
    Conrath KE, Lauwereys M, Galleni M et al (2001) beta-Lactamase inhibitors derived from single-domain antibody fragments elicited in the Camelidae. Antimicrob Agents Chemother 45:2807–2812CrossRefPubMedGoogle Scholar
  5. 5.
    Conrath KE, Wernery U, Muyldermans S, Nguyen VK (2003) Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev Comp Immunol 27:87–103CrossRefPubMedGoogle Scholar
  6. 6.
    De Genst E, Saerens D, Muyldermans S, Conrath K (2006) Antibody repertoire development in camelids. Dev Comp Immunol 30:187–198CrossRefPubMedGoogle Scholar
  7. 7.
    De Genst E, Silence K, Decanniere K et al (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 103:4586–4591CrossRefPubMedGoogle Scholar
  8. 8.
    DeArmond SJ, Fajardo M, Naughton SA, Eng LF (1983) Degradation of glial fibrillary acidic protein protein by a calcium dependent proteinase: an electroblot study. Brain Res 262:275–282CrossRefPubMedGoogle Scholar
  9. 9.
    Desmyter A, Spinelli S, Payan F et al (2002) Three camelid VHH domains in complex with porcine pancreatic alpha-amylase: inhibition and versatility of binding topology. J Biol Chem 277:23645–23650CrossRefPubMedGoogle Scholar
  10. 10.
    Desmyter A, Transue TR, Ghahroudi MA et al (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811CrossRefPubMedGoogle Scholar
  11. 11.
    Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451CrossRefPubMedGoogle Scholar
  12. 12.
    Frenken LG, van der Linden RH, Hermans PW et al (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotech 78:11–21CrossRefGoogle Scholar
  13. 13.
    Friguet B, Chaffote AF, Djavadi-Ohaniance L, Goldberg ME (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77:305–319CrossRefPubMedGoogle Scholar
  14. 14.
    Gabbot PL, Somogyi J (1984) The ‘single’ section Golgi-impregnation procedure: methodological description. J Neurosci Methods 11:221–230CrossRefGoogle Scholar
  15. 15.
    Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448CrossRefPubMedGoogle Scholar
  16. 16.
    Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 94:4937–4942CrossRefPubMedGoogle Scholar
  17. 17.
    Harmsen MM, de Haard HJW (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microb Biotech 77:13–22CrossRefGoogle Scholar
  18. 18.
    Harmsen MM, van Solt CB, Fijten HPD et al (2007) Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 120:193–206CrossRefPubMedGoogle Scholar
  19. 19.
    Hoogenboom HR, Winter G (1992) By-passing immunisation: human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227:381–388CrossRefPubMedGoogle Scholar
  20. 20.
    Lafaye P, Achour I, England P, Duyckaerts C, Rougeon F (2009) Single-domain antibodies recognize selectively small oligomeric forms of amyloid β, prevent Aβ-induced neurotoxicity and inhibit fibril formation. Mol Immunol 46:695–704CrossRefPubMedGoogle Scholar
  21. 21.
    Lafaye P, Nato F, Mazié J-C, Doyen N (1995) Similar binding activity for a neutralizing anti-tetanus toxoid human monoclonal antibody and its bacterially expressed Fab. Res Immunol 146:373–382CrossRefPubMedGoogle Scholar
  22. 22.
    Lefranc M-P, Giudicelli V, Ginestoux C et al (1999) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 27:209–212CrossRefPubMedGoogle Scholar
  23. 23.
    Mao S, Gao C, Lo C et al (1999) Phage display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc Natl Acad Sci USA 96:6953–6958CrossRefPubMedGoogle Scholar
  24. 24.
    Mouratou B, Schaeffer F, Guilvout I et al (2007) Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD. Proc Natl Acad Sci USA 104:17983–17988CrossRefPubMedGoogle Scholar
  25. 25.
    Muyldermans S (2001) Single domain camel antibodies: current status. Rev Mol Biotechnol 74:277–302CrossRefGoogle Scholar
  26. 26.
    Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Prot Eng 7:1129–1135CrossRefGoogle Scholar
  27. 27.
    Muyldermans S, Lauwereys M (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J Mol Rec 12:131–140CrossRefGoogle Scholar
  28. 28.
    Nguyen VK, Su C, Muyldermans S, van der Loo W (2002) Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. Immunogenetics 54:39–47CrossRefPubMedGoogle Scholar
  29. 29.
    Olichon A, Schweizer D, Muyldermans S, de Marco A (2007) Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnol 7:7CrossRefPubMedGoogle Scholar
  30. 30.
    Perez JM, Renisio JG, Prompers JJ et al (2001) Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry 40:74–83CrossRefPubMedGoogle Scholar
  31. 31.
    Saerens D, Kinne J, Bosmans E et al (2004) Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279:51965–51972CrossRefPubMedGoogle Scholar
  32. 32.
    Schlaepfer WW, Zimmerman V-JP (1981) Calcium mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord. Neurochem Res 6:243–255CrossRefPubMedGoogle Scholar
  33. 33.
    Stijlemans B, Conrath K, Cortez-Retamozo V et al (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279:1256–1261CrossRefPubMedGoogle Scholar
  34. 34.
    Tanha J, Dubuc G, Hirama T, Narang SA, MacKenzie CR (2002) Selection by phage display of llama conventional VH fragments with heavy chain antibody VHH properties. J Immunol Methods 263:97–109CrossRefPubMedGoogle Scholar
  35. 35.
    van der Linden RH, Frenken LG, de Geus B et al (1999) Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431:37–46PubMedGoogle Scholar
  36. 36.
    Zahnd C, Amstutz P, Pluckthun A (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 4:269–279CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Claire Perruchini
    • 1
  • Frederic Pecorari
    • 2
  • Jean-Pierre Bourgeois
    • 3
  • Charles Duyckaerts
    • 1
  • François Rougeon
    • 4
  • Pierre Lafaye
    • 4
    Email author
  1. 1.INSERM U289, Hôpital de la SalpêtrièreParisFrance
  2. 2.CNRS UMR 6204, Université de NantesNantesFrance
  3. 3.Institut PasteurUnité de Génétique Humaine et Fonctions Cognitives, CNRS URA 2182Paris CedexFrance
  4. 4.Institut PasteurUnité de Génétique et Biochimie du Développement, CNRS U2581Paris Cedex 15France

Personalised recommendations