Acta Neuropathologica

, 118:803 | Cite as

Parvalbumin-positive GABAergic interneurons are increased in the dorsal hippocampus of the dystrophic mdx mouse

  • Claudia Del Tongo
  • Donatella Carretta
  • Gianluca Fulgenzi
  • Claudio Catini
  • Diego Minciacchi
Original Paper

Abstract

Duchenne muscular dystrophy (DMD) is characterized by variable alterations of the dystrophin gene and by muscle weakness and cognitive impairment. We postulated an association between cognitive impairment and architectural changes of the hippocampal GABAergic system. We investigated a major subpopulation of GABAergic neurons, the parvalbumin-immunopositive (PV-I) cells, in the dorsal hippocampus of the mdx mouse, an acknowledged model of DMD. PV-I neurons were quantified and their distribution was compared in CA1, CA2, CA3, and dentate gyrus in wild-type and mdx mice. The cell morphology and topography of PV-I neurons were maintained. Conversely, the number of PV-I neurons was significantly increased in the mdx mouse. The percent increase of PV-I neurons was from 45% for CA2, up to 125% for the dentate gyrus. In addition, the increased parvalbumin content in the mdx hippocampus was confirmed by Western blot. A change in the hippocampus processing abilities is the expected functional counterpart of the modification displayed by PV-I GABAergic neurons. Altered hippocampal functionality can be responsible for part of the cognitive impairment in DMD.

Keywords

Duchenne muscular dystrophy Mutant mouse strain Dystrophin Immunohistochemistry Dentate gyrus 

References

  1. 1.
    Anderson JL, Head SI, Rae C, Morley JW (2002) Brain function in Duchenne muscular dystrophy. Brain 125:4–13CrossRefPubMedGoogle Scholar
  2. 2.
    Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308CrossRefPubMedGoogle Scholar
  3. 3.
    Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JR, Jonas P (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci USA 99:13222–13227CrossRefPubMedGoogle Scholar
  4. 4.
    Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 17:2094–2107CrossRefPubMedGoogle Scholar
  5. 5.
    Braak E, Strotkamp B, Braak H (1991) Parvalbumin-immunoreactive structures in the hippocampus of the human adult. Cell Tissue Res 264:33–48CrossRefPubMedGoogle Scholar
  6. 6.
    Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377CrossRefPubMedGoogle Scholar
  7. 7.
    Carretta D, Santarelli M, Vanni D, Carrai R, Sbriccoli A, Pinto F, Minciacchi D (2001) The organisation of spinal projecting brainstem neurons in an animal model of muscular dystrophy. A retrograde tracing study on mdx mutant mice. Brain Res 895:213–222CrossRefPubMedGoogle Scholar
  8. 8.
    Carretta D, Santarelli M, Vanni D, Ciabatti S, Sbriccoli A, Pinto F, Minciacchi D (2003) Cortical and brainstem neurons containing calcium-binding proteins in a murine model of Duchenne’s muscular dystrophy: selective changes in the sensorimotor cortex. J Comp Neurol 456:48–59CrossRefPubMedGoogle Scholar
  9. 9.
    Carretta D, Santarelli M, Sbriccoli A, Pinto F, Catini C, Minciacchi D (2004) Spatial analysis reveals alterations of parvalbumin- and calbindin-positive local circuit neurons in the cerebral cortex of mutant mdx mice. Brain Res 1016:1–11CrossRefPubMedGoogle Scholar
  10. 10.
    Celio MR (1986) Parvalbumin in most g-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995–997CrossRefPubMedGoogle Scholar
  11. 11.
    Celio MR (1990) Calbindin D-28K and parvalbumin in rat nervous system. Neuroscience 35:375–475CrossRefPubMedGoogle Scholar
  12. 12.
    Chelly J, Kaplan JC, Maire P, Gautron S, Kahn J (1988) Transcription of dystrophin gene in human muscle and non-muscle tissues. Nature 333:858–860CrossRefPubMedGoogle Scholar
  13. 13.
    Cotton S, Voudouris NJ, Greenwood KM (2001) Intelligence and Duchenne muscular dystrophy: full-scale, verbal, and performance intelligence quotients. Dev Med Child Neurol 43:497–501CrossRefPubMedGoogle Scholar
  14. 14.
    Cyrulnik SE, Hinton VJ (2008) Duchenne muscular dystrophy: a cerebellar disorder? Neurosci Biobehav Rev 32:486–496CrossRefPubMedGoogle Scholar
  15. 15.
    Dubowitz V (1965) Intellectual impairment in muscular dystrophy. Arch Dis Child 40:296–301CrossRefGoogle Scholar
  16. 16.
    Dubowitz V (1978) Muscle disorders in childhood. WB Saunders Company Ltd, LondonGoogle Scholar
  17. 17.
    Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12:349–361CrossRefPubMedGoogle Scholar
  18. 18.
    Emery AE (1993) Duchenne muscular dystrophy—Meryon’s disease. Neuromuscul Disord 3:263–266CrossRefPubMedGoogle Scholar
  19. 19.
    Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470CrossRefPubMedGoogle Scholar
  20. 20.
    Fujise N, Liu Y, Hori N, Kosaka T (1998) Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity. Neuroscience 82:181–200CrossRefPubMedGoogle Scholar
  21. 21.
    Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. I. Terminal area related to number of granule and pyramidal cells. J Comp Neurol 178:49–72CrossRefPubMedGoogle Scholar
  22. 22.
    Gao B, Fritschy JM (1994) Selective allocation of GABAA receptors containing the alpha 1 subunit to neurochemically distinct subpopulations of rat hippocampal interneurons. Eur J Neurosci 6:837–853CrossRefPubMedGoogle Scholar
  23. 23.
    Graciotti L, Minelli A, Minciacchi D, Procopio A, Fulgenzi G (2008) GABAergic miniature spontaneous activity is increased in the CA1 hippocampal region of dystrophic mdx mice. Neuromuscul Disord 18:220–226CrossRefPubMedGoogle Scholar
  24. 24.
    Gulyás AI, Toth K, Danos P, Freund TF (1991) Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus. J Comp Neurol 312:371–378CrossRefPubMedGoogle Scholar
  25. 25.
    Haenggi T, Fritschy JM (2006) Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 63:1614–1631CrossRefPubMedGoogle Scholar
  26. 26.
    Hendrickson AE, Van Brederode JF, Mulligan KA, Celio MR (1991) Development of the calcium-binding protein parvalbumin and calbindin in monkey striate cortex. J Comp Neurol 307:626–646CrossRefPubMedGoogle Scholar
  27. 27.
    Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffman EP, Brown RH, Kundel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928CrossRefPubMedGoogle Scholar
  29. 29.
    Hopf FW, Turner PR, Steinhardt RA (2007) Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 45:429–464CrossRefPubMedGoogle Scholar
  30. 30.
    Jinno S, Kosaka T (2002) Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. J Comp Neurol 449:1–25CrossRefPubMedGoogle Scholar
  31. 31.
    Jinno S, Kosaka T (2006) Cellular architecture of the mouse hippocampus: a quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 56:229–245CrossRefPubMedGoogle Scholar
  32. 32.
    Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JD, Fuentealba P, Bushong EA, Henze D, Buzsáki G, Somogyi P (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27:8790–8804CrossRefPubMedGoogle Scholar
  33. 33.
    Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW, Hama K (1987) Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res 416:369–374CrossRefPubMedGoogle Scholar
  34. 34.
    Kim TW, Wu K, Xu JL, Black IB (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 89:11642–11644CrossRefPubMedGoogle Scholar
  35. 35.
    Klausberger T, Marton LF, O’Neill J, Huck JH, Dalezios Y, Fuentealba P, Suen WY, Papp E, Kaneko T, Watanabe M, Csicsvari J, Somogyi P (2005) Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. J Neurosci 25:9782–9793CrossRefPubMedGoogle Scholar
  36. 36.
    Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM (1999) Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462CrossRefPubMedGoogle Scholar
  37. 37.
    Knuesel I, Zuellig RA, Schaub MC, Fritschy JM (2001) Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur J Neurosci 13:1113–1124CrossRefPubMedGoogle Scholar
  38. 38.
    Lee JS, Pfund Z, Juhász C, Behen ME, Muzik O, Chugani DC, Nigro MA, Chugani HT (2002) Altered regional brain glucose metabolism in Duchenne muscular dystrophy: a pet study. Muscle Nerve 26:506–512CrossRefPubMedGoogle Scholar
  39. 39.
    Leranth C, Ribak CE (1991) Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region’s resistance to epileptic damage. Exp Brain Res 85:129–136CrossRefPubMedGoogle Scholar
  40. 40.
    Lidov HG (1996) Dystrophin in the nervous system. Brain Pathol 6:63–77CrossRefPubMedGoogle Scholar
  41. 41.
    Lidov HG, Byers TJ, Kunkel LM (1993) The distribution of dystrophin in the murine central nervous system: an immunocytochemical study. Neuroscience 54:167–187CrossRefPubMedGoogle Scholar
  42. 42.
    Liu Y, Fujise N, Kosaka T (1996) Distribution of calretinin immunoreactivity in the mouse dentate gyrus. I. General description. Exp Brain Res 108:389–403CrossRefPubMedGoogle Scholar
  43. 43.
    Luna LG (1968) Manual of histologic staining methods of the armed forces institute of pathology, vol 3rd. McGraw-Hill, New YorkGoogle Scholar
  44. 44.
    Mehler MF, Haas KZ, Kessler JA, Stanton PK (1992) Enhanced sensitivity of hippocampal pyramidal neurons from mdx mice to hypoxia-induced loss of synaptic transmission. Proc Natl Acad Sci USA 89:2461–2465CrossRefPubMedGoogle Scholar
  45. 45.
    Mercer A, Trigg HL, Thomson AM (2007) Characterization of neurons in the CA2 subfield of the adult rat hippocampus. J Neurosci 27:7329–7338CrossRefPubMedGoogle Scholar
  46. 46.
    Minciacchi D, Del Tongo C, Nosi D, Carretta D, Catini C, Granato A (2007) Organization of cortico-cortical associative projections in the motor and somatosensory regions of the mutant mdx mouse. Italian Society for Neuroscence Congress 2007, Verona, 27–30 September, SUN-41Google Scholar
  47. 47.
    Miranda R, Sébrié C, Degrouard J, Gillet B, Jaillard D, Laroche S, Vaillend C (2009) Reorganization of inhibitory synapses and increased PSD length of perforated excitatory synapses in hippocampal area CA1 of dystrophin-deficient mdx mice. Cereb Cortex 19:876–888CrossRefPubMedGoogle Scholar
  48. 48.
    Moser E, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13:3916–3925PubMedGoogle Scholar
  49. 49.
    Moser MB, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619CrossRefPubMedGoogle Scholar
  50. 50.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  51. 51.
    Pittenger C, Huang YY, Paletzki RF, Bourtchouladze R, Scanlin H, Vronskaya S, Kandel ER (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34:447–462CrossRefPubMedGoogle Scholar
  52. 52.
    Rae C, Griffin JL, Blair DH, Bothwell JH, Bubb WA, Maitland A, Head S (2002) Abnormalities in brain biochemistry associated with lack of dystrophin: studies of the mdx mouse. Neuromuscul Disord 12:121–129CrossRefPubMedGoogle Scholar
  53. 53.
    Sakurai O, Kosaka T (2007) Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus. Brain Res 1186:129–143CrossRefPubMedGoogle Scholar
  54. 54.
    Sbriccoli A, Santarelli M, Carretta D, Pinto F, Granato A, Minciacchi D (1995) Architectural changes of the cortico-spinal system in the mouse dystrophin defective mdx mouse. Neurosci Lett 200:53–56CrossRefPubMedGoogle Scholar
  55. 55.
    Schneider Gasser EM, Duveau V, Prenosil GA, Fritschy JM (2007) Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in alpha1-subunit-null mice. Eur J Neurosci 25:3287–3304CrossRefPubMedGoogle Scholar
  56. 56.
    Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136PubMedGoogle Scholar
  57. 57.
    Torelli S, Sogos V, Ennas MG, Muntoni F, Clerk A, Strong PN, Gremo F (1992) Dystrophin immunoreactivity in normal and Duchenne human fetal neurons in culture. J Neurosci Res 32:116–125CrossRefPubMedGoogle Scholar
  58. 58.
    Uchino M, Teramoto H, Naoe H, Yoshioka K, Miike T, Ando M (1994) Localisation and characterisation of dystrophin in the central nervous system of controls and patients with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 57:426–429CrossRefPubMedGoogle Scholar
  59. 59.
    Vaillend C, Billard JM, Dutar P, Claudepierre T, Rendon A, Ungerer A (1998) Spatial discrimination learning and CA1 hippocampal synaptic plasticity in mdx and mdx3cv mice lacking dystrophin-brain isoforms. Neuroscience 86:53–66CrossRefPubMedGoogle Scholar
  60. 60.
    Vaillend C, Billard JM (2002) Facilitated CA1 hippocampal synaptic plasticity in dystrophin-deficient mice: role for GABAA receptors? Hippocampus 12:713–717CrossRefPubMedGoogle Scholar
  61. 61.
    Vaillend C, Billard JM, Laroche S (2004) Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd(mdx) mouse. Neurobiol Dis 17:10–20CrossRefPubMedGoogle Scholar
  62. 62.
    van Vliet EA, Aronica E, Tolner EA, Lopes da Silva FH, Gorter JA (2004) Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Exp Neurol 187:367–379CrossRefPubMedGoogle Scholar
  63. 63.
    Wallis T, Bubb WA, McQuillan JA, Balcar VJ, Rae C (2004) For want of a nail. Ramifications of a single gene deletion, dystrophin, in the brain of the mouse. Front Biosci 9:74–84CrossRefPubMedGoogle Scholar
  64. 64.
    West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497CrossRefPubMedGoogle Scholar
  65. 65.
    Yoshihara Y, Onodera H, Iinuma K, itoyama Y (2003) Abnormal kainic acid receptor density and reduced seizure susceptibility in dystrophin-deficient mdx mice. Neuroscience 117:391–395CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Claudia Del Tongo
    • 1
  • Donatella Carretta
    • 1
  • Gianluca Fulgenzi
    • 2
    • 3
  • Claudio Catini
    • 1
  • Diego Minciacchi
    • 1
  1. 1.Department of Anatomy, Histology and Forensic MedicineUniversity of FlorenceFlorenceItaly
  2. 2.Department of Experimental Pathology and Innovative TherapiesUniversity Polytechnic of MarcheAnconaItaly
  3. 3.Mouse Cancer Genetic ProgramNational Cancer InstituteFrederickUSA

Personalised recommendations