Acta Neuropathologica

, Volume 118, Issue 1, pp 5–36 | Cite as

Classification and basic pathology of Alzheimer disease

  • Charles Duyckaerts
  • Benoît Delatour
  • Marie-Claude Potier
Review

Abstract

The lesions of Alzheimer disease include accumulation of proteins, losses of neurons and synapses, and alterations related to reactive processes. Extracellular Aβ accumulation occurs in the parenchyma as diffuse, focal or stellate deposits. It may involve the vessel walls of arteries, veins and capillaries. The cases in which the capillary vessel walls are affected have a higher probability of having one or two apoε 4 alleles. Parenchymal as well as vascular Aβ deposition follows a stepwise progression. Tau accumulation, probably the best histopathological correlate of the clinical symptoms, takes three aspects: in the cell body of the neuron as neurofibrillary tangle, in the dendrites as neuropil threads, and in the axons forming the senile plaque neuritic corona. The progression of tau pathology is stepwise and stereotyped from the entorhinal cortex, through the hippocampus, to the isocortex. The neuronal loss is heterogeneous and area-specific. Its mechanism is still discussed. The timing of the synaptic loss, probably linked to Aβ peptide itself, maybe as oligomers, is also controversial. Various clinico-pathological types of Alzheimer disease have been described, according to the type of the lesions (plaque only and tangle predominant), the type of onset (focal onset), the cause (genetic or sporadic) and the associated lesions (Lewy bodies, vascular lesions, hippocampal sclerosis, TDP-43 inclusions and argyrophilic grain disease).

Notes

Acknowledgments

The help of the medical doctors, students and scientists who worked in the laboratory (Yi He, Toshiki Uchihara, Marie-Anne Colle, Pascale Lacor, Malika Bennecib, Yolanda Arends, Wienneke Metsaars, Nadège Girardot, Thibaut Lebouvier, Claire Perruchini among others) is greatly acknowledged: as well the expertise of the technical staff. Several studies mentioned in this work were supported by the grants from ANR (ChoAD) and LECMA.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor α-1 antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52:487–501. doi:10.1016/0092-8674(88)90462-X PubMedGoogle Scholar
  2. 2.
    Adalbert R, Nogradi A, Babetto E, Janeckova L, Walker SA, Kerschensteiner M, Misgeld T, Coleman MP (2009) Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain 132:402–416. doi:10.1093/brain/awn312 PubMedGoogle Scholar
  3. 3.
    Akiyama H, Mori H, Saido T, Kondo H, Ikeda K, McGeer PL (1999) Occurrence of the diffuse amyloid beta-protein (Abeta) deposits with numerous Abeta-containing glial cells in the cerebral cortex of patients with Alzheimer’s disease. Glia 25:324–331. doi:10.1002/(SICI)1098-1136(19990215)25:4<324::AID-GLIA2>3.0.CO;2-5 PubMedGoogle Scholar
  4. 4.
    Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H, Bugiani O, Del-Tredici K, Ferrer I, Gelpi E, Giaccone G, Graeber MB, Ince P, Kamphorst W, King A, Korkolopoulou P, Kovacs GG, Larionov S, Meyronet D, Monoranu C, Parchi P, Patsouris E, Roggendorf W, Seilhean D, Tagliavini F, Stadelmann C, Streichenberger N, Thal DR, Wharton SB, Kretzschmar H (2008) Staging of neurofibrillary pathology in Alzheimer’s disease: a study of the BrainNet Europe Consortium. Brain Pathol 18:484–496PubMedGoogle Scholar
  5. 5.
    Alafuzoff I, Pikkarainen M, Arzberger T, Thal DR, Al-Sarraj S, Bell J, Bodi I, Budka H, Capetillo-Zarate E, Ferrer I, Gelpi E, Gentleman S, Giaccone G, Kavantzas N, King A, Korkolopoulou P, Kovacs GG, Meyronet D, Monoranu C, Parchi P, Patsouris E, Roggendorf W, Stadelmann C, Streichenberger N, Tagliavini F, Kretzschmar H (2008) Inter-laboratory comparison of neuropathological assessments of beta-amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathol 115:533–546. doi:10.1007/s00401-008-0358-2 PubMedGoogle Scholar
  6. 6.
    Aletrino MA, Vogels OJ, Van Domburg PH, Ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468. doi:10.1016/0197-4580(92)90073-7 PubMedGoogle Scholar
  7. 7.
    Alladi S, Xuereb J, Bak T, Nestor P, Knibb J, Patterson K, Hodges JR (2007) Focal cortical presentations of Alzheimer’s disease. Brain 130:2636–2645. doi:10.1093/brain/awm213 PubMedGoogle Scholar
  8. 8.
    Amador-Ortiz C, Dickson DW (2008) Neuropathology of hippocampal sclerosis. Handb Clin Neurol 89:569–572. doi:10.1016/S0072-9752(07)01253-5 PubMedGoogle Scholar
  9. 9.
    Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. doi:10.1002/ana.21154 PubMedGoogle Scholar
  10. 10.
    Anderson AJ, Stoltzner S, Lai F, Su J, Nixon RA (2000) Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol Aging 21:511–524. doi:10.1016/S0197-4580(00)00126-3 PubMedGoogle Scholar
  11. 11.
    Anderton BH, Breinburg D, Downes MJ, Green PJ, Tomlinson BE, Ulrich J, Wood JN, Kahn J (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature 298:84–86. doi:10.1038/298084a0 PubMedGoogle Scholar
  12. 12.
    Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454. doi:10.1523/JNEUROSCI.4637-04.2005 PubMedGoogle Scholar
  13. 13.
    Anheim M, Hannequin D, Boulay C, Martin C, Campion D, Tranchant C (2007) Ataxic variant of Alzheimer’s disease caused by Pro117Ala PSEN1 mutation. J Neurol Neurosurg Psychiatry 78:1414–1415. doi:10.1136/jnnp.2007.123026 PubMedGoogle Scholar
  14. 14.
    Aoki M, Volkmann I, Tjernberg LO, Winblad B, Bogdanovic N (2008) Amyloid beta-peptide levels in laser capture microdissected cornu ammonis 1 pyramidal neurons of Alzheimer’s brain. Neuroreport 19:1085–1089PubMedGoogle Scholar
  15. 15.
    Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 59:102–112. doi:10.1001/archneur.59.1.102 PubMedGoogle Scholar
  16. 16.
    Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PL (2006) Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 65:19–25. doi:10.1097/01.jnen.0000196133.74087.cb PubMedGoogle Scholar
  17. 17.
    Arends YM, Duyckaerts C, Rozemuller JM, Eikelenboom P, Hauw JJ (2000) Microglia, amyloid and dementia in alzheimer disease. A correlative study. Neurobiol Aging 21:39–47. doi:10.1016/S0197-4580(00)00094-4 PubMedGoogle Scholar
  18. 18.
    Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol 61:101–108. doi:10.1007/BF00697388 PubMedGoogle Scholar
  19. 19.
    Arendt T, Zvegintseva HG, Leontovich TA (1986) Dendritic changes in the basal nucleus of Meynert and in the diagonal band in Alzheimer disease. A quantitative Golgi investigation. Neuroscience 19:1265–1278. doi:10.1016/0306-4522(86)90141-7 PubMedGoogle Scholar
  20. 20.
    Aronica E, Dickson DW, Kress Y, Morrison JH, Zukin RS (1998) Non-plaque dystrophic dendrites in Alzheimer hippocampus: a new pathological structure revealed by glutamate receptor immunocytochemistry. Neuroscience 82:979–991. doi:10.1016/S0306-4522(97)00260-1 PubMedGoogle Scholar
  21. 21.
    Attems J, Jellinger KA (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology—a pilot study. Acta Neuropathol 107:83–90. doi:10.1007/s00401-003-0796-9 PubMedGoogle Scholar
  22. 22.
    Attems J, Jellinger KA (2006) Hippocampal sclerosis in Alzheimer disease and other dementias. Neurology 66:775. doi:10.1212/01.wnl.0000200959.50898.26 PubMedGoogle Scholar
  23. 23.
    Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271PubMedGoogle Scholar
  24. 24.
    Attems J, Jellinger KA, Lintner F (2005) Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 110:222–231. doi:10.1007/s00401-005-1064-y PubMedGoogle Scholar
  25. 25.
    Attems J, Lauda F, Jellinger KA (2008) Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study. J Neurol 255:70–76. doi:10.1007/s00415-008-0674-4 PubMedGoogle Scholar
  26. 26.
    Attems J, Preusser M, Grosinger-Quass M, Wagner L, Lintner F, Jellinger K (2008) Calcium-binding protein secretagogin-expressing neurones in the human hippocampus are largely resistant to neurodegeneration in Alzheimer’s disease. Neuropathol Appl Neurobiol 34:23–32PubMedGoogle Scholar
  27. 27.
    Attems J, Quass M, Jellinger KA (2007) Tau and alpha-synuclein brainstem pathology in Alzheimer disease: relation with extrapyramidal signs. Acta Neuropathol 113:53–62. doi:10.1007/s00401-006-0146-9 PubMedGoogle Scholar
  28. 28.
    Attems J, Quass M, Jellinger KA, Lintner F (2007) Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 257:49–55. doi:10.1016/j.jns.2007.01.013 PubMedGoogle Scholar
  29. 29.
    Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99. doi:10.1016/0006-8993(89)91396-6 PubMedGoogle Scholar
  30. 30.
    Bancher C, Egensperger R, Kosel S, Jellinger K, Graeber MB (1997) Low prevalence of apolipoprotein E epsilon 4 allele in the neurofibrillary tangle predominant form of senile dementia. Acta Neuropathol 94:403–409. doi:10.1007/s004010050726 PubMedGoogle Scholar
  31. 31.
    Bancher C, Jellinger K, Lassmann H, Fischer P, Leblhuber F (1996) Correlations between mental state and quantitative neuropathology in the Vienna Longitudinal Study on Dementia. Eur Arch Psychiatry Clin Neurosci 246:137–146. doi:10.1007/BF02189115 PubMedGoogle Scholar
  32. 32.
    Bancher C, Jellinger KA (1994) Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects. Acta Neuropathol 88:565–570. doi:10.1007/BF00296494 PubMedGoogle Scholar
  33. 33.
    Barelli H, Lebeau A, Vizzavona J, Delaere P, Chevallier N, Drouot C, Marambaud P, Ancolio K, Buxbaum JD, Khorkova O, Heroux J, Sahasrabudhe S, Martinez J, Warter JM, Mohr M, Checler F (1997) Characterization of new polyclonal antibodies specific for 40 and 42 amino acid-long amyloid beta peptides: their use to examine the cell biology of presenilins and the immunohistochemistry of sporadic Alzheimer’s disease and cerebral amyloid angiopathy cases. Mol Med 3:695–707PubMedGoogle Scholar
  34. 34.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66:1837–1844. doi:10.1212/01.wnl.0000219668.47116.e6 PubMedGoogle Scholar
  35. 35.
    Berg L, McKeel DWJ, Miller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J, Goate AM, Price JL, Gearing M, Mirra SS, Saunders AM (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55:326–335. doi:10.1001/archneur.55.3.326 PubMedGoogle Scholar
  36. 36.
    Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci USA 100:9034–9038. doi:10.1073/pnas.1530287100 PubMedGoogle Scholar
  37. 37.
    Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52:81–88PubMedGoogle Scholar
  38. 38.
    Blessed G, Tomlinson BE, Roth M (1968) The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry 114:797–811. doi:10.1192/bjp.114.512.797 PubMedGoogle Scholar
  39. 39.
    Boche D, Nicoll JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18:267–278. doi:10.1111/j.1750-3639.2008.00134.x PubMedGoogle Scholar
  40. 40.
    Boller F, Mizutani R, Roessmann U, Gambetti P (1980) Parkinson’s disease, dementia and Alzheimer’s disease: clinico-pathological correlations. Ann Neurol 1:329–355. doi:10.1002/ana.410070408 Google Scholar
  41. 41.
    Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567. doi:10.1007/BF00293315 PubMedGoogle Scholar
  42. 42.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi:10.1007/s00401-006-0127-z PubMedGoogle Scholar
  43. 43.
    Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol 68:325–332. doi:10.1007/BF00690836 PubMedGoogle Scholar
  44. 44.
    Braak H, Braak E (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appl Neurobiol 14:39–44. doi:10.1111/j.1365-2990.1988.tb00864.x PubMedGoogle Scholar
  45. 45.
    Braak H, Braak E (1990) Alzheimer’s disease: striatal amyloid deposits and neurofibrillary changes. J Neuropathol Exp Neurol 49:215–224. doi:10.1097/00005072-199005000-00003 PubMedGoogle Scholar
  46. 46.
    Braak H, Braak E (1990) Neurofibrillary changes confined to the entorhinal region and abundance of cortical amyloid in cases of presenile and senile dementia. Acta Neuropathol 80:479–486. doi:10.1007/BF00294607 PubMedGoogle Scholar
  47. 47.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. doi:10.1007/BF00308809 PubMedGoogle Scholar
  48. 48.
    Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357. doi:10.1016/S0197-4580(97)00056-0 PubMedGoogle Scholar
  49. 49.
    Braak H, Braak E, Grundke-Iqbal I, Iqbal K (1986) Occurence of neuropil threads in the senile human brain and in Alzheimer’s disease. A 3rd location of paired helical filaments outside of neurofilament tangles and neuritic plaques. Neurosci Lett 65:351–355. doi:10.1016/0304-3940(86)90288-0 PubMedGoogle Scholar
  50. 50.
    Braak H, Duyckaerts C, Braak E, Piette F (1993) Neuropathological staging of Alzheimer-related changes correlates with psychometrically assessed intellectual status. In: Corain B, Iqbal K, Nicolini M, Winblad B, Wisniewskiet H, Zatta P (eds) Alzheimer’s disease: advances in clinical and basic research. Wiley, Chichester, pp 131–137Google Scholar
  51. 51.
    Brion JP, Passareiro H, Nunez J, Flament-Durand J (1985) Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol Brux 95:229–235Google Scholar
  52. 52.
    Brion JP, Smith C, Couck AM, Gallo JM, Anderton BH (1993) Developmental changes in tau phosphorylation: fetal tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer’s disease. J Neurochem 61:2071–2080. doi:10.1111/j.1471-4159.1993.tb07444.x PubMedGoogle Scholar
  53. 53.
    Broe M, Shepherd CE, Milward EA, Halliday GM (2001) Relationship between DNA fragmentation, morphological changes and neuronal loss in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 101:616–624PubMedGoogle Scholar
  54. 54.
    Buée L, Hof PR, Roberts DD, Delacourte A, Morrison JH, Fillit HM (1992) Immunohistochemical Identification of thrombospondin in normal human brain and in Alzheimer’s disease. Am J Pathol 141:783–788PubMedGoogle Scholar
  55. 55.
    Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043. doi:10.1073/pnas.060009897 PubMedGoogle Scholar
  56. 56.
    Burns JM, Galvin JE, Roe CM, Morris JC, McKeel DW (2005) The pathology of the substantia nigra in Alzheimer disease with extrapyramidal signs. Neurology 64:1397–1403PubMedGoogle Scholar
  57. 57.
    Burns MP, Noble WJ, Olm V, Gaynor K, Casey E, LaFrancois J, Wang L, Duff K (2003) Co-localization of cholesterol, apolipoprotein E and fibrillar Abeta in amyloid plaques. Brain Res Mol Brain Res 110:119–125. doi:10.1016/S0169-328X(02)00647-2 PubMedGoogle Scholar
  58. 58.
    Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18:401–416. doi:10.1016/S0197-4580(97)00035-3 PubMedGoogle Scholar
  59. 59.
    Bussiere T, Friend PD, Sadeghi N, Wicinski B, Lin GI, Bouras C, Giannakopoulos P, Robakis NK, Morrison JH, Perl DP, Hof PR (2002) Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer’s disease. Neuroscience 112:75–91. doi:10.1016/S0306-4522(02)00056-8 PubMedGoogle Scholar
  60. 60.
    Cabrejo L, Guyant-Marechal L, Laquerriere A, Vercelletto M, De la Fourniere F, Thomas-Anterion C, Verny C, Letournel F, Pasquier F, Vital A, Checler F, Frebourg T, Campion D, Hannequin D (2006) Phenotype associated with APP duplication in five families. Brain 129:2966–2976. doi:10.1093/brain/awl237 PubMedGoogle Scholar
  61. 61.
    Cairns NJ, Chadwick A, Luthert PJ, Lantos PL (1992) Astrocytosis, beta A4-protein deposition and paired helical filament formation in Alzheimer’s disease. J Neurol Sci 112:68–75. doi:10.1016/0022-510X(92)90134-7 PubMedGoogle Scholar
  62. 62.
    Cajal SR (1928) Degeneration and regeneration of the nervous system. Oxford University Press, LondonGoogle Scholar
  63. 63.
    Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795. doi:10.1074/jbc.271.51.32789 PubMedGoogle Scholar
  64. 64.
    Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300PubMedGoogle Scholar
  65. 65.
    Cataldo AM, Nixon RA (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci USA 87:3861–3865. doi:10.1073/pnas.87.10.3861 PubMedGoogle Scholar
  66. 66.
    Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA (2008) Transient intraneuronal A beta rather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice. Acta Neuropathol 116:647–655. doi:10.1007/s00401-008-0451-6 PubMedGoogle Scholar
  67. 67.
    Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290. doi:10.1172/JCI25247 PubMedGoogle Scholar
  68. 68.
    Collingwood JF, Chong RK, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Perry G, Posfai M, Siedlak SL, Simpson ET, Smith MA, Dobson J (2008) Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. J Alzheimers Dis 14:235–245PubMedGoogle Scholar
  69. 69.
    Cras P, Smith MA, Richey PL, Siedlak SL, Mulvihill P, Perry G (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol 89:291–295. doi:10.1007/BF00309621 PubMedGoogle Scholar
  70. 70.
    Crook R, Verkkoniemi A, Perez-Tur J, Mehta N, Baker M, Houlden H, Farrer M, Hutton M, Lincoln S, Hardy J, Gwinn K, Somer M, Paetau A, Kalimo H, Ylikoski R, Poyhonen M, Kucera S, Haltia M (1998) A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 4:452–455. doi:10.1038/nm0498-452 PubMedGoogle Scholar
  71. 71.
    Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, Lassmann H (2008) Multiple sclerosis and Alzheimer’s disease. Ann Neurol 63:174–183. doi:10.1002/ana.21240 PubMedGoogle Scholar
  72. 72.
    D’Andrea MR, Nagele RG, Gumula NA, Reiser PA, Polkovitch DA, Hertzog BM, Andrade-Gordon P (2002) Lipofuscin and Abeta42 exhibit distinct distribution patterns in normal and Alzheimer’s disease brains. Neurosci Lett 323:45–49. doi:10.1016/S0304-3940(01)02444-2 PubMedGoogle Scholar
  73. 73.
    D’Andrea MR, Reiser PA, Polkovitch DA, Gumula NA, Branchide B, Hertzog BM, Schmidheiser D, Belkowski S, Gastard MC, Andrade-Gordon P (2003) The use of formic acid to embellish amyloid plaque detection in Alzheimer’s disease tissues misguides key observations. Neurosci Lett 342:114–118. doi:10.1016/S0304-3940(03)00252-0 PubMedGoogle Scholar
  74. 74.
    Davis DG, Schmidt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58:376–388. doi:10.1097/00005072-199904000-00008 PubMedGoogle Scholar
  75. 75.
    De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29:1334–1347. doi:10.1016/j.neurobiolaging.2007.02.029 PubMedGoogle Scholar
  76. 76.
    de la Monte SM, Vonsattel JP, Richardson EPJ (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 47:516–525. doi:10.1097/00005072-198809000-00003 PubMedGoogle Scholar
  77. 77.
    Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913. doi:10.1038/nm890 PubMedGoogle Scholar
  78. 78.
    DeKosky ST, Scheff W (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitve severity. Ann Neurol 27:457–464. doi:10.1002/ana.410270502 PubMedGoogle Scholar
  79. 79.
    Delacourte A (1990) General and dramatic glial reaction in Alzheimer brains. Neurology 40:33–37PubMedGoogle Scholar
  80. 80.
    Delacourte A, Defossez A (1986) Alzheimer’s disease: Tau proteins, the promoting factors of microtubule assembly are major components of paired helical filaments. J Neurol Sci 76:173–186. doi:10.1016/0022-510X(86)90167-X PubMedGoogle Scholar
  81. 81.
    Delaère P, Duyckaerts C, He Y, Piette F, Hauw J-J (1991) Subtypes and differential laminar distributions of βA4 deposits in Alzheimer’s disease: relationship with the intellectual status of 26 cases. Acta Neuropathol 81:328–335. doi:10.1007/BF00305876 PubMedGoogle Scholar
  82. 82.
    Delaère P, Duyckaerts C, Masters C, Piette F, Hauw J-J (1990) Large amounts of neocortical βA4 deposits without Alzheimer changes in a nondemented case. Neurosci Lett 116:87–93. doi:10.1016/0304-3940(90)90391-L PubMedGoogle Scholar
  83. 83.
    Delatour B, Blanchard V, Pradier L, Duyckaerts C (2004) Alzheimer pathology disorganizes cortico-cortical circuitry: direct evidence from a transgenic animal model. Neurobiol Dis 16:41–47. doi:10.1016/j.nbd.2004.01.008 PubMedGoogle Scholar
  84. 84.
    Delatour B, Mercken L, El Hachimi KH, Colle MA, Pradier L, Duyckaerts C (2001) FE65 in Alzheimer’s disease: neuronal distribution and association with neurofibrillary tangles. Am J Pathol 158:1585–1591PubMedGoogle Scholar
  85. 85.
    Delobel P, Flament S, Hamdane M, Mailliot C, Sambo AV, Begard S, Sergeant N, Delacourte A, Vilain JP, Buee L (2002) Abnormal Tau phosphorylation of the Alzheimer-type also occurs during mitosis. J Neurochem 83:412–420. doi:10.1046/j.1471-4159.2002.01143.x PubMedGoogle Scholar
  86. 86.
    Dessi F, Colle MA, Hauw JJ, Duyckaerts C (1997) Accumulation of SNAP-25 immunoreactive material in axons of Alzheimer’s disease. Neuroreport 8:3685–3689. doi:10.1097/00001756-199712010-00006 PubMedGoogle Scholar
  87. 87.
    Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–304. doi:10.1016/0197-4580(95)00013-5 PubMedGoogle Scholar
  88. 88.
    Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson MK (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189. doi:10.1016/0197-4580(92)90027-U PubMedGoogle Scholar
  89. 89.
    Dickson DW, Ksiezak-Reding H, Davies P, Yen SH (1987) A monoclonal antibody that recognizes a phosphorylated epitope in Alzheimer’s neurofibrillary tangles, neurofilaments and tau proteins immunostains granulo-vacuolar degeneration. Acta Neuropathol 73:254–258. doi:10.1007/BF00686619 PubMedGoogle Scholar
  90. 90.
    Dickson DW, Lee SC, Mattiace LA, Yen SC, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7:75–83. doi:10.1002/glia.440070113 PubMedGoogle Scholar
  91. 91.
    Dickson DW, Liu WK, Kress Y, Ku J, DeJesus O, Yen SHC (1993) Phosphorylated tau immunoreactivity of granulovacuolar bodies (GVB) of Alzheimer’s disease: localization of two amino terminal tau epitopes in GVB. Acta Neuropathol 85:463–470. doi:10.1007/BF00230483 PubMedGoogle Scholar
  92. 92.
    Dickson TC, King CE, McCormack GH, Vickers JC (1999) Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer’s disease. Exp Neurol 156:100–110. doi:10.1006/exnr.1998.7010 PubMedGoogle Scholar
  93. 93.
    Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42:2768–2773. doi:10.1021/bi0272151 PubMedGoogle Scholar
  94. 94.
    Double KL, Halliday GM, Kril JJ, Harasty JA, Cullen K, Brooks WS, Creasey H, Broe GA (1996) Topography of brain atrophy during normal aging and Alzheimer’s disease. Neurobiol Aging 17:513–521. doi:10.1016/0197-4580(96)00005-X PubMedGoogle Scholar
  95. 95.
    Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6:1053–1057. doi:10.1097/00001756-199505090-00026 PubMedGoogle Scholar
  96. 96.
    Dumanchin C, Tournier I, Martin C, Didic M, Belliard S, Carlander B, Rouhart F, Duyckaerts C, Pellissier JF, Latouche JB, Hannequin D, Frebourg T, Tosi M, Campion D (2006) Biological effects of four PSEN1 gene mutations causing Alzheimer disease with spastic paraparesis and cotton wool plaques. Hum Mutat 27:1063. doi:10.1002/humu.9458 PubMedGoogle Scholar
  97. 97.
    Duyckaerts C, Bennecib M, Grignon Y, Uchihara T, He Y, Piette F, Hauw JJ (1997) Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 18:267–273. doi:10.1016/S0197-4580(97)80306-5 PubMedGoogle Scholar
  98. 98.
    Duyckaerts C, Colle MA, Dessi F, Grignon Y, Piette F, Hauw JJ (1998) The progression of the lesions in Alzheimer disease: insights from a prospective clinicopathological study. J Neural Trans 53:S119–S126Google Scholar
  99. 99.
    Duyckaerts C, Colle MA, Seilhean D, Hauw J-J (1998) Laminar spongiosis of the dentate gyrus: a sign of disconnection, present in cases of Alzheimer disease. Acta Neuropathol 95:413–420. doi:10.1007/s004010050818 PubMedGoogle Scholar
  100. 100.
    Duyckaerts C, Delaère P, Hauw J-J, Abbamondi-Pinto AL, Sorbi S, Allen I, Brion J-P, Flament-Durand J, Duchen L, Kauss J, Sclote W, Lowe J, Probst A, Ravid R, Swaab DF, Renkawek K, Tomlinson B (1990) Rating of the lesions in senile dementia of the Alzheimer type: concordance between laboratories. A European multicenter study under the auspices of Eurage. J Neurol Sci 97:295–323. doi:10.1016/0022-510X(90)90226-D PubMedGoogle Scholar
  101. 101.
    Duyckaerts C, Godefroy G, Hauw J-J (1994) Evaluation of neuronal numerical density by Dirichlet tessellation. J Neurosci Methods 51:47–69. doi:10.1016/0165-0270(94)90025-6 PubMedGoogle Scholar
  102. 102.
    Duyckaerts C, Hauw JJ (1997) Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 18:362–369. doi:10.1016/S0197-4580(97)00047-X discussion 389–392PubMedGoogle Scholar
  103. 103.
    Duyckaerts C, Hauw J-J, Bastenaire F, Piette F, Poulain C, Rainsard V, Javoy-Agid F, Berthaux P (1986) Laminar distribution of neocortical plaques in senile dementia of the Alzheimer type. Acta Neuropathol 70:249–256. doi:10.1007/BF00686079 PubMedGoogle Scholar
  104. 104.
    Duyckaerts C, Hauw J-J, Piette F, Rainsard C, Poulain V, Berthaux P, Escourolle R (1985) Cortical atrophy in senile dementia of the Alzheimer type is mainly due to a decrease in cortical length. Acta Neuropathol 66:72–74. doi:10.1007/BF00698298 PubMedGoogle Scholar
  105. 105.
    Duyckaerts C, Kawasaki H, Delaère P, Rainsard C, Hauw J-J (1989) Fiber disorganization in the neocortex of patients with senile dementia of the Alzheimer type. Neuropathol Appl Neurobiol 15:233–247. doi:10.1111/j.1365-2990.1989.tb01225.x PubMedGoogle Scholar
  106. 106.
    Duyckaerts C, Llamas E, Delaère P, Miele P, Hauw J-J (1989) Neuronal loss and neuronal atrophy. Computer simulation in connection with Alzheimer’s disease. Brain Res 504:94–100. doi:10.1016/0006-8993(89)91602-8 PubMedGoogle Scholar
  107. 107.
    Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38. doi:10.1007/s00401-007-0312-8 PubMedGoogle Scholar
  108. 108.
    Duyckaerts C, Uchihara T, Seilhean D, He Y, Hauw JJ (1997) Dissociation of Alzheimer type pathology in a disconnected piece of cortex. Acta Neuropathol 93:501–507. doi:10.1007/s004010050645 PubMedGoogle Scholar
  109. 109.
    Eikelenboom P, Veerhuis R, Familian A, Hoozemans JJ, van Gool WA, Rozemuller AJ (2008) Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications. Neurodegener Dis 5:190–193. doi:10.1159/000113699 PubMedGoogle Scholar
  110. 110.
    Endoh R, Ogawara M, Iwatsubo T, Nakano I, Mori H (1993) Lack of the carboxyl terminal sequence of tau in ghost tangles of Alzheimer’s disease. Brain Res 601:164–172. doi:10.1016/0006-8993(93)91707-Y PubMedGoogle Scholar
  111. 111.
    Falke E, Nissanov J, Mitchell TW, Bennett DA, Trojanowski JQ, Arnold SE (2003) Subicular dendritic arborization in Alzheimer’s disease correlates with neurofibrillary tangle density. Am J Pathol 163:1615–1621PubMedGoogle Scholar
  112. 112.
    Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172:1683–1692. doi:10.2353/ajpath.2008.070829 PubMedGoogle Scholar
  113. 113.
    Fisher O (1907) Miliare Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veranderung der Hirnrind bei seniler Demenz. Monatsschr Psychiatr Neurol 22:361–372Google Scholar
  114. 114.
    Flament-Durand J, Couck AM (1979) Spongiform alterations in brain biopsies of presenile dementia. Acta Neuropathol 46:159. doi:10.1007/BF00684819 PubMedGoogle Scholar
  115. 115.
    Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572. doi:10.1212/01.WNL.0000159743.08996.99 PubMedGoogle Scholar
  116. 116.
    Fujino Y, Wang DS, Thomas N, Espinoza M, Davies P, Dickson DW (2005) Increased frequency of argyrophilic grain disease in Alzheimer disease with 4R tau-specific immunohistochemistry. J Neuropathol Exp Neurol 64:209–214PubMedGoogle Scholar
  117. 117.
    Garcia-Sierra F, Mondragon-Rodriguez S, Basurto-Islas G (2008) Truncation of tau protein and its pathological significance in Alzheimer’s disease. J Alzheimers Dis 14:401–409PubMedGoogle Scholar
  118. 118.
    German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676. doi:10.1002/ana.410320510 PubMedGoogle Scholar
  119. 119.
    Gertz HJ, Xuereb J, Huppert F, Brayne C, McGee MA, Paykel E, Harrington C, Mukaetova-Ladinska E, Arendt T, Wischik CM (1998) Examination of the validity of the hierarchical model of neuropathological staging in normal aging and Alzheimer’s disease. Acta Neuropathol 95:154–158. doi:10.1007/s004010050780 PubMedGoogle Scholar
  120. 120.
    Gertz HJ, Xuereb JH, Huppert FA, Brayne C, Kruger H, McGee MA, Paykel ES, Harrington CR, Mukaetova-Ladinska EB, O’Connor DW, Wischik CM (1996) The relationship between clinical dementia and neuropathological staging (Braak) in a very elderly community sample. Eur Arch Psychiatry Clin Neurosci 246:132–136. doi:10.1007/BF02189114 PubMedGoogle Scholar
  121. 121.
    Geula C, Nagykery N, Nicholas A, Wu CK (2008) Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J Neuropathol Exp Neurol 67:309–318. doi:10.1097/NEN.0b013e31816a1df3 PubMedGoogle Scholar
  122. 122.
    Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500PubMedGoogle Scholar
  123. 123.
    Giannakopoulos P, von Gunten A, Kovari E, Gold G, Herrmann FR, Hof PR, Bouras C (2007) Stereological analysis of neuropil threads in the hippocampal formation: relationships with Alzheimer’s disease neuronal pathology and cognition. Neuropathol Appl Neurobiol 33:334–343. doi:10.1111/j.1365-2990.2007.00827.x PubMedGoogle Scholar
  124. 124.
    Gibson PH, Tomlinson BE (1977) Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 33:199–206. doi:10.1016/0022-510X(77)90193-9 PubMedGoogle Scholar
  125. 125.
    Girardot N, Allinquant B, Langui D, El Hachimi KH, Dubois B, Hauw J-J, Duyckaerts C (2003) Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer’s disease. J Neuropathol Appl Neurobiol 29:451–461. doi:10.1046/j.1365-2990.2003.00479.x Google Scholar
  126. 126.
    Gold G, Bouras C, Kovari E, Canuto A, Glaria BG, Malky A, Hof PR, Michel JP, Giannakopoulos P (2000) Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol 99:579–582. doi:10.1007/s004010051163 Discussion 583–574PubMedGoogle Scholar
  127. 127.
    Gold G, Giannakopoulos P, Herrmann FR, Bouras C, Kovari E (2007) Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain 130:2830–2836. doi:10.1093/brain/awm228 PubMedGoogle Scholar
  128. 128.
    Gold G, Kovari E, Corte G, Herrmann FR, Canuto A, Bussiere T, Hof PR, Bouras C, Giannakopoulos P (2001) Clinical validity of A beta-protein deposition staging in brain aging and Alzheimer disease. J Neuropathol Exp Neurol 60:946–952PubMedGoogle Scholar
  129. 129.
    Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24. doi:10.1002/ana.410410106 PubMedGoogle Scholar
  130. 130.
    Gomez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500PubMedGoogle Scholar
  131. 131.
    Gonatas NK, Anderson W, Evangelista I (1967) The contribution of altered synapses in the senile plaque: an electron microscopic study in Alzheimer’s dementia. J Neuropathol Exp Neurol 26:25–39. doi:10.1097/00005072-196701000-00003 PubMedGoogle Scholar
  132. 132.
    Goudsmit E, Hofman MA, Fliers E, Swaab DF (1990) The supraoptic and paraventricular nuclei of the human hypothalamus in relation to sex, age and Alzheimer’s disease. Neurobiol Aging 11:529–536. doi:10.1016/0197-4580(90)90114-F PubMedGoogle Scholar
  133. 133.
    Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20PubMedGoogle Scholar
  134. 134.
    Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705. doi:10.1002/ana.1009 PubMedGoogle Scholar
  135. 135.
    Gray EG, Paula-Barbosa M, Roher A (1987) Alzheimer’s disease: paired helical filaments and cytomembranes. Neuropathol Appl Neurobiol 13:91–110. doi:10.1111/j.1365-2990.1987.tb00174.x PubMedGoogle Scholar
  136. 136.
    Gray F, Dubas F, Roullet E, Escourolle R (1985) Leukoencephalopathy in diffuse hemorrhagic cerebral amyloid angiopathy. Ann Neurol 18:54–59. doi:10.1002/ana.410180110 PubMedGoogle Scholar
  137. 137.
    Greffard S, Verny M, Bonnet AM, Seilhean D, Hauw JJ, Duyckaerts C (2008) A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.03.015
  138. 138.
    Gregory GC, Macdonald V, Schofield PR, Kril JJ, Halliday GM (2006) Differences in regional brain atrophy in genetic forms of Alzheimer’s disease. Neurobiol Aging 27:387–393. doi:10.1016/j.neurobiolaging.2005.03.011 PubMedGoogle Scholar
  139. 139.
    Grignon Y, Duyckaerts C, Bennecib M, Hauw JJ (1998) Cytoarchitectonic alterations in the supramarginal gyrus of late onset Alzheimer’s disease. Acta Neuropathol 95:395–406. doi:10.1007/s004010050816 PubMedGoogle Scholar
  140. 140.
    Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335. doi:10.1016/j.neurobiolaging.2006.02.007 PubMedGoogle Scholar
  141. 141.
    Grundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 86:2853–2857. doi:10.1073/pnas.86.8.2853 PubMedGoogle Scholar
  142. 142.
    Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089PubMedGoogle Scholar
  143. 143.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. doi:10.1073/pnas.83.13.4913 PubMedGoogle Scholar
  144. 144.
    Grundke-Iqbal I, Iqbal K, Tung YC, Wang GP, Wisniewski HM (1985) Alzheimer paired helical filaments: cross-reacting polypeptide/s normally present in brain. Acta Neuropathol 66:52–61. doi:10.1007/BF00698295 PubMedGoogle Scholar
  145. 145.
    Grutzendler J, Helmin K, Tsai J, Gan WB (2007) Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer’s disease. Ann N Y Acad Sci 1097:30–39. doi:10.1196/annals.1379.003 PubMedGoogle Scholar
  146. 146.
    Guntert A, Dobeli H, Bohrmann B (2006) High sensitivity analysis of amyloid-beta peptide composition in amyloid deposits from human and PS2APP mouse brain. Neuroscience 143:461–475. doi:10.1016/j.neuroscience.2006.08.027 PubMedGoogle Scholar
  147. 147.
    Guo JP, Arai T, Miklossy J, McGeer PL (2006) Abeta and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc Natl Acad Sci USA 103:1953–1958. doi:10.1073/pnas.0509386103 PubMedGoogle Scholar
  148. 148.
    Gylys KH, Fein JA, Yang F, Wiley DJ, Miller CA, Cole GM (2004) Synaptic changes in Alzheimer’s disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol 165:1809–1817PubMedGoogle Scholar
  149. 149.
    Gyure KA, Durham R, Stewart WF, Smialek JE, Troncoso JC (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125:489–492PubMedGoogle Scholar
  150. 150.
    Halliday GM, Double KL, Macdonald V, Kril JJ (2003) Identifying severely atrophic cortical subregions in Alzheimer’s disease. Neurobiol Aging 24:797–806. doi:10.1016/S0197-4580(02)00227-0 PubMedGoogle Scholar
  151. 151.
    Hansen LA, Masliah E, Galasko D, Terry RD (1993) Plaque-only Alzheimer disease is usually the Lewy body variant and vice versa. J Neuropathol Exp Neurol 52:648–654. doi:10.1097/00005072-199311000-00012 PubMedGoogle Scholar
  152. 152.
    Hansen LA, Masliah E, Terry RD, Mirra SS (1989) A neuropathological subset of Alzheimer’s disease with concomitant Lewy body disease and spongiform change. Acta Neuropathol 78(2):194–201PubMedGoogle Scholar
  153. 153.
    Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276:422–427. doi:10.1006/bbrc.2000.3490 PubMedGoogle Scholar
  154. 154.
    Haroutunian V, Schnaider-Beeri M, Schmeidler J, Wysocki M, Purohit DP, Perl DP, Libow LS, Lesser GT, Maroukian M, Grossman HT (2008) Role of the neuropathology of Alzheimer disease in dementia in the oldest-old. Arch Neurol 65:1211–1217. doi:10.1001/archneur.65.9.1211 PubMedGoogle Scholar
  155. 155.
    Hayes GM, Howlett DR, Griffin GE (2002) Production of beta-amyloid by primary human foetal mixed brain cell cultures and its modulation by exogenous soluble beta-amyloid. Neuroscience 113:641–646. doi:10.1016/S0306-4522(02)00191-4 PubMedGoogle Scholar
  156. 156.
    He Y, Delaere P, Duyckaerts C, Wasowicz M, Piette F, Hauw JJ (1993) Two distinct ubiquitin immunoreactive senile plaques in Alzheimer’s disease: relationship with the intellectual status in 29 cases. Acta Neuropathol 86:109–116. doi:10.1007/BF00454909 PubMedGoogle Scholar
  157. 157.
    He Y, Duyckaerts C, Delaère P, Piette F, Hauw J-J (1993) Alzheimer’s lesions labelled by anti-ubiquitin antibodies. Comparison with other staining techniques. Neuropathol Appl Neurobiol 19:364–371. doi:10.1111/j.1365-2990.1993.tb00453.x PubMedGoogle Scholar
  158. 158.
    Heinonen O, Soininen H, Syrjanen S, Neittaanmaki H, Paljarvi L, Kosunen O, Syrjanen K, Riekkinen P Sr (1994) beta-Amyloid protein immunoreactivity in skin is not a reliable marker of Alzheimer’s disease. An autopsy-controlled study. Arch Neurol 51:799–804PubMedGoogle Scholar
  159. 159.
    Hempen B, Brion JP (1996) Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J Neuropathol Exp Neurol 55:964–972. doi:10.1097/00005072-199609000-00003 PubMedGoogle Scholar
  160. 160.
    Herzog AG, Kemper TL (1980) Amygdaloid changes in aging and dementia. Arch Neurol 37:625–629PubMedGoogle Scholar
  161. 161.
    Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O, Uchikado H, Furukawa Y, Kosaka K, Arai H (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi:10.1016/j.brainres.2007.09.048 PubMedGoogle Scholar
  162. 162.
    Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20:3–11. doi:10.1111/j.1365-2990.1994.tb00951.x PubMedGoogle Scholar
  163. 163.
    Hock C, Golombowski S, Muller-Spahn F, Peschel O, Riederer A, Probst A, Mandelkow E, Unger J (1998) Histological markers in nasal mucosa of patients with Alzheimer’s disease. Eur Neurol 40:31–36. doi:10.1159/000007953 PubMedGoogle Scholar
  164. 164.
    Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223. doi:10.1016/S0140-6736(08)61075-2 PubMedGoogle Scholar
  165. 165.
    Horowitz PM, Patterson KR, Guillozet-Bongaarts AL, Reynolds MR, Carroll CA, Weintraub ST, Bennett DA, Cryns VL, Berry RW, Binder LI (2004) Early N-terminal changes and caspase-6 cleavage of tau in Alzheimer’s disease. J Neurosci 24:7895–7902. doi:10.1523/JNEUROSCI.1988-04.2004 PubMedGoogle Scholar
  166. 166.
    Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170. doi:10.1126/science.6474172 PubMedGoogle Scholar
  167. 167.
    Jellinger KA (2006) The morphological basis of mental dysfunction in Parkinson’s disease. J Neurol Sci 248:167–172. doi:10.1016/j.jns.2006.05.002 PubMedGoogle Scholar
  168. 168.
    Jellinger KA, Attems J (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 113:107–117. doi:10.1007/s00401-006-0156-7 PubMedGoogle Scholar
  169. 169.
    Jellinger KA, Attems J (2007) Neuropathological evaluation of mixed dementia. J Neurol Sci 257:80–87. doi:10.1016/j.jns.2007.01.045 PubMedGoogle Scholar
  170. 170.
    Jellinger KA, Bancher C (1998) Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol 8:367–376PubMedGoogle Scholar
  171. 171.
    Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 101:343–347. doi:10.1073/pnas.2634794100 PubMedGoogle Scholar
  172. 172.
    Joachim C, Games D, Morris J, Ward P, Frenkel D, Selkoe D (1991) Antibodies to non-beta regions of the beta-amyloid precursor protein detect a subset of senile plaques. Am J Pathol 138:373–384PubMedGoogle Scholar
  173. 173.
    Joachim CL, Morris JH, Selkoe DJ (1988) Clinically diagnosed Alzheimer’s disease: autopsy results in 150 cases. Ann Neurol 24:50–56. doi:10.1002/ana.410240110 PubMedGoogle Scholar
  174. 174.
    Josephs KA, Whitwell JL, Ahmed Z, Shiung MM, Weigand SD, Knopman DS, Boeve BF, Parisi JE, Petersen RC, Dickson DW, Jack CR Jr (2008) Beta-amyloid burden is not associated with rates of brain atrophy. Ann Neurol 63:204–212. doi:10.1002/ana.21223 PubMedGoogle Scholar
  175. 175.
    Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M, Rademakers R, Boeve BF, Parisi JE, Smith GE, Ivnik RJ, Petersen RC, Jack CR Jr, Dickson DW (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–1857. doi:10.1212/01.wnl.0000304041.09418.b1 PubMedGoogle Scholar
  176. 176.
    Kahn J, Anderton BH, Probst A, Ulrich J, Esiri M (1985) Immunologic studies of granulovacuolar degeneration using monoclonal antibodies to neurofilaments. J Neurol Neurosurg Psychiatry 48:926–927. doi:10.1136/jnnp.48.9.924 Google Scholar
  177. 177.
    Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144. doi:10.1002/ana.410230206 PubMedGoogle Scholar
  178. 178.
    Kemppainen N, Roytta M, Collan Y, Ma SY, Hinkka S, Rinne JO (2002) Unbiased morphological measurements show no neuronal loss in the substantia nigra in Alzheimer’s disease. Acta Neuropathol 103:43–47. doi:10.1007/s004010100425 PubMedGoogle Scholar
  179. 179.
    Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105PubMedGoogle Scholar
  180. 180.
    Kidd M (1963) Paired helical filaments in electron microscopy in Alzheimer’s disease. Nature 197:262–268. doi:10.1038/197192b0 Google Scholar
  181. 181.
    Kidd M (1964) Alzheimer’s disease. An electron microscopic study. Brain 87:307–320. doi:10.1093/brain/87.2.307 PubMedGoogle Scholar
  182. 182.
    Kimura N, Yanagisawa K, Terao K, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2005) Age-related changes of intracellular Abeta in cynomolgus monkey brains. Neuropathol Appl Neurobiol 31:170–180. doi:10.1111/j.1365-2990.2004.00624.x PubMedGoogle Scholar
  183. 183.
    Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, Smith GE, Dickson DW, Johnson KA, Petersen LE, McDonald WC, Braak H, Petersen RC (2003) Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 62:1087–1095PubMedGoogle Scholar
  184. 184.
    Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49:202–213. doi:10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 PubMedGoogle Scholar
  185. 185.
    Kovacs T, Cairns NJ, Lantos PL (1999) Beta-amyloid deposition and neurofibrillary tangle formation in the olfactory bulb in ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 25:481–491. doi:10.1046/j.1365-2990.1999.00208.x PubMedGoogle Scholar
  186. 186.
    Kovacs T, Cairns NJ, Lantos PL (2001) Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. Neuroreport 12:285–288. doi:10.1097/00001756-200102120-00021 PubMedGoogle Scholar
  187. 187.
    Kril JJ, Hodges J, Halliday G (2004) Relationship between hippocampal volume and CA1 neuron loss in brains of humans with and without Alzheimer’s disease. Neurosci Lett 361:9–12. doi:10.1016/j.neulet.2004.02.001 PubMedGoogle Scholar
  188. 188.
    Kril JJ, Patel S, Harding AJ, Halliday GM (2002) Neuron loss from the hippocampus of Alzheimer’s disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathol 103:370–376. doi:10.1007/s00401-001-0477-5 PubMedGoogle Scholar
  189. 189.
    Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28:228–237. doi:10.1046/j.1365-2990.2002.00394.x PubMedGoogle Scholar
  190. 190.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807. doi:10.1523/JNEUROSCI.3501-06.2007 PubMedGoogle Scholar
  191. 191.
    LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G (1997) Neuronal cell death in Alzheimer’s disease correlates with apoE uptake and intracellular Abeta stabilization. J Clin Invest 100:310–320. doi:10.1172/JCI119536 PubMedGoogle Scholar
  192. 192.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453. doi:10.1073/pnas.95.11.6448 PubMedGoogle Scholar
  193. 193.
    Langui D, Girardot N, El Hachimi H, Allinquant B, Blanchard V, Pradier L, Duyckaerts C (2004) Subcellular topography of neuronal A-beta peptide in APPxPS1 transgenic mice. Am J Pathol 165:1465–1477PubMedGoogle Scholar
  194. 194.
    Lantos PL, Ovenstone IM, Johnson J, Clelland CA, Roques P, Rossor MN (1994) Lewy bodies in the brain of two members of a family with the 717 (Val to Ile) mutation of the amyloid precursor protein gene. Neurosci Lett 172:77–79. doi:10.1016/0304-3940(94)90666-1 PubMedGoogle Scholar
  195. 195.
    Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89:35–41. doi:10.1007/BF00294257 PubMedGoogle Scholar
  196. 196.
    Le TV, Crook R, Hardy J, Dickson DW (2001) Cotton wool plaques in non-familial late-onset Alzheimer disease. J Neuropathol Exp Neurol 60:1051–1061PubMedGoogle Scholar
  197. 197.
    Lebouvier T, Perruchini C, Panchal M, Potier MC, Duyckaerts C (2009) Cholesterol in the senile plaque: often mentioned, never seen. Acta Neuropathol 117:31–34. doi:10.1007/s00401-008-0448-1 PubMedGoogle Scholar
  198. 198.
    Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, Hampel H, Evans AC (2008) Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls. Neurobiol Aging 29:23–30. doi:10.1016/j.neurobiolaging.2006.09.013 PubMedGoogle Scholar
  199. 199.
    Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55. doi:10.1111/j.1365-2990.2006.00795.x PubMedGoogle Scholar
  200. 200.
    Leuba G, Savioz A, Vernay A, Carnal B, Kraftsik R, Tardif E, Riederer I, Riederer BM (2008) Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein. J Alzheimers Dis 15:139–151PubMedGoogle Scholar
  201. 201.
    Leverenz JB, Fishel MA, Peskind ER, Montine TJ, Nochlin D, Steinbart E, Raskind MA, Schellenberg GD, Bird TD, Tsuang D (2006) Lewy body pathology in familial Alzheimer disease: evidence for disease- and mutation-specific pathologic phenotype. Arch Neurol 63:370–376. doi:10.1001/archneur.63.3.370 PubMedGoogle Scholar
  202. 202.
    Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126. doi:10.1126/science.2111584 PubMedGoogle Scholar
  203. 203.
    Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, Iqbal K, Grundke-Iqbal I (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67:78–84. doi:10.1097/nen.0b013e318160c5db PubMedGoogle Scholar
  204. 204.
    Lippa CF, Schmidt ML, Lee VM, Trojanowski JQ (1999) Antibodies to alpha-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol 45:353–357. doi:10.1002/1531-8249(199903)45:3<353::AID-ANA11>3.0.CO;2-4 PubMedGoogle Scholar
  205. 205.
    Liu K, Solano I, Mann D, Lemere C, Mercken M, Trojanowski JQ, Lee VM (2006) Characterization of Abeta11-40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Abeta species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol 112:163–174. doi:10.1007/s00401-006-0077-5 PubMedGoogle Scholar
  206. 206.
    Liu Y, Stern Y, Chun MR, Jacobs DM, Yau P, Goldman JE (1997) Pathological correlates of extrapyramidal signs in Alzheimer’s disease. Ann Neurol 41:368–374. doi:10.1002/ana.410410312 PubMedGoogle Scholar
  207. 207.
    Lockhart A, Lamb JR, Osredkar T, Sue LI, Joyce JN, Ye L, Libri V, Leppert D, Beach TG (2007) PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain 130:2607–2615. doi:10.1093/brain/awm191 PubMedGoogle Scholar
  208. 208.
    Lucassen PJ, Chung WC, Kamphorst W, Swaab DF (1997) DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol 56:887–900. doi:10.1097/00005072-199708000-00007 PubMedGoogle Scholar
  209. 209.
    Luse SA, Smith KR Jr (1964) The ultrastructure of senile plaques. Am J Pathol 44:553–563PubMedGoogle Scholar
  210. 210.
    Maat-Schieman ML, Yamaguchi H, van Duinen SG, Natte R, Roos RA (2000) Age-related plaque morphology and C-terminal heterogeneity of amyloid beta in Dutch-type hereditary cerebral hemorrhage with amyloidosis. Acta Neuropathol 99:409–419. doi:10.1007/s004010051143 PubMedGoogle Scholar
  211. 211.
    MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M (1997) Expression of Fos, Jun, and Krox family proteins in Alzheimer’s disease. Exp Neurol 147:316–332. doi:10.1006/exnr.1997.6600 PubMedGoogle Scholar
  212. 212.
    Mandybur TI, Chuirazzi CC (1990) Astrocytes and the plaques of Alzheimer’s disease. Neurology 40:635–639PubMedGoogle Scholar
  213. 213.
    Mann DM, Takeuchi A, Sato S, Cairns NJ, Lantos PL, Rossor MN, Haltia M, Kalimo H, Iwatsubo T (2001) Cases of Alzheimer’s disease due to deletion of exon 9 of the presenilin-1 gene show an unusual but characteristic beta-amyloid pathology known as ‘cotton wool’ plaques. Neuropathol Appl Neurobiol 27:189–196. doi:10.1046/j.1365-2990.2001.00316.x PubMedGoogle Scholar
  214. 214.
    Mann DMA (1991) The topographic distribution of brain atrophy in Alzheimer’s disease. Acta Neuropathol 83:81–86. doi:10.1007/BF00294434 PubMedGoogle Scholar
  215. 215.
    Markesbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46. doi:10.1001/archneur.63.1.38 PubMedGoogle Scholar
  216. 216.
    Martin-Rehrmann MD, Hoe HS, Capuani EM, Rebeck GW (2005) Association of apolipoprotein J-positive beta-amyloid plaques with dystrophic neurites in Alzheimer’s disease brain. Neurotox Res 7:231–242PubMedCrossRefGoogle Scholar
  217. 217.
    Masliah E, Alford M, Adame A, Rockenstein E, Galasko D, Salmon D, Hansen LA, Thal LJ (2003) Abeta1-42 promotes cholinergic sprouting in patients with AD and Lewy body variant of AD. Neurology 61:206–211PubMedGoogle Scholar
  218. 218.
    Masliah E, Ellisman M, Carragher B, Mallory M, Young S, Hansen L, DeTeresa R, Terry RD (1992) Three-dimensional analysis of the relationship between synaptic pathology and neuropil threads in Alzheimer disease. J Neuropathol Exp Neurol 51:404–414. doi:10.1097/00005072-199207000-00003 PubMedGoogle Scholar
  219. 219.
    Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129PubMedGoogle Scholar
  220. 220.
    Masliah E, Mallory M, Hansen L, Alford M, Albright T, DeTeresa R, Terry R, Baudier J, Saitoh T (1991) Patterns of aberrant sprouting in Alzheimer’s disease. Neuron 6:729–739. doi:10.1016/0896-6273(91)90170-5 PubMedGoogle Scholar
  221. 221.
    Masliah E, Terry RD, Mallory M, Alford M, Hansen LA (1990) Diffuse plaques do not accentuate synapse loss in Alzheimer’s disease. Am J Pathol 137:1293–1297PubMedGoogle Scholar
  222. 222.
    Matsuo ES, Shin RW, Billingsley ML, Van de Voorde A, O’Connor M, Trojanowski JQ, Lee VMY (1994) Biopsy-derived adult human tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13:989–1002. doi:10.1016/0896-6273(94)90264-X PubMedGoogle Scholar
  223. 223.
    McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Complement activation in amyloid plaques in Alzheimer’s dementia. Neurosci Lett 107:341–346. doi:10.1016/0304-3940(89)90843-4 PubMedGoogle Scholar
  224. 224.
    McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer E (1993) Microglia in degenerative neurological diseases. Glia 7:84–92. doi:10.1002/glia.440070114 PubMedGoogle Scholar
  225. 225.
    McKee AC, Au R, Cabral HJ, Kowall NW, Seshadri S, Kubilus CA, Drake J, Wolf PA (2006) Visual association pathology in preclinical Alzheimer disease. J Neuropathol Exp Neurol 65:621–630. doi:10.1097/00005072-200606000-00010 PubMedGoogle Scholar
  226. 226.
    McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland D, Arai H, Ballard CG, Boeve B, Burn DJ, Costa D, Del Ser T, Dubois B, Galasko D, Gauthier S, Goetz CG, Gomez-Tortosa E, Halliday G, Hansen LA, Hardy J, Iwatsubo T, Kalaria RN, Kaufer D, Kenny RA, Korczyn A, Kosaka K, Lee VM, Lees A, Litvan I, Londos E, Lopez OL, Minoshima S, Mizuno Y, Molina JA, Mukaetova-Ladinska EB, Pasquier F, Perry RH, Schulz JB, Trojanowski JQ, Yamada M (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872. doi:10.1212/01.wnl.0000187889.17253.b1 PubMedGoogle Scholar
  227. 227.
    McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866. doi:10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M PubMedGoogle Scholar
  228. 228.
    Mesulam M, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828. doi:10.1002/ana.20100 PubMedGoogle Scholar
  229. 229.
    Mesulam M, Wicklund A, Johnson N, Rogalski E, Leger GC, Rademaker A, Weintraub S, Bigio EH (2008) Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 63:709–719. doi:10.1002/ana.21388 PubMedGoogle Scholar
  230. 230.
    Metsaars WP, Hauw JJ, Welsem ME, Duyckaerts C (2003) A grading system of Alzheimer disease lesions in neocortical areas. Neurobiol Aging 24:563–572. doi:10.1016/S0197-4580(02)00134-3 PubMedGoogle Scholar
  231. 231.
    Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724. doi:10.1038/nature06616 PubMedGoogle Scholar
  232. 232.
    Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44:10810–10821. doi:10.1021/bi0508237 PubMedGoogle Scholar
  233. 233.
    Mirra SS, Gearing M, McKeel DW, Crain BJ, Hughes JP, Van Belle G, Heyman A (1994) Interlaboratory comparison of neuropathology assessments in Alzheimer’s disease: a study of the consortium to establish a registry for Alzheimer’s disease (CERAD). J Neuropathol Exp Neurol 53:303–315. doi:10.1097/00005072-199405000-00012 PubMedGoogle Scholar
  234. 234.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  235. 235.
    Moller H, Graeber M (1998) The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci 248:111–122. doi:10.1007/s004060050027 PubMedGoogle Scholar
  236. 236.
    Mori T, Paris D, Town T, Rojiani AM, Sparks DL, Delledonne A, Crawford F, Abdullah LI, Humphrey JA, Dickson DW, Mullan MJ (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 60:778–785PubMedGoogle Scholar
  237. 237.
    Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J Neurosci 27:6859–6867. doi:10.1523/JNEUROSCI.0379-07.2007 PubMedGoogle Scholar
  238. 238.
    Mukaetova-Ladinska EB, Garcia-Siera F, Hurt J, Gertz HJ, Xuereb JH, Hills R, Brayne C, Huppert FA, Paykel ES, McGee M, Jakes R, Honer WG, Harrington CR, Wischik CM (2000) Staging of cytoskeletal and beta-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease. Am J Pathol 157:623–636PubMedGoogle Scholar
  239. 239.
    Munoz DG, Ferrer I (2008) Neuropathology of hereditary forms of frontotemporal dementia and parkinsonism. Handb Clin Neurol 89:393–414. doi:10.1016/S0072-9752(07)01237-7 PubMedGoogle Scholar
  240. 240.
    Munoz DG, Wang D (1992) Tangle-associated neuritic clusters. A new lesion in Alzheimer’s disease and aging suggests that aggregates of dystrophic neurites are not necessarily associated with beta/A4. Am J Pathol 140:1167–1178PubMedGoogle Scholar
  241. 241.
    Munoz DG, Woulfe J, Kertesz A (2007) Argyrophilic thorny astrocyte clusters in association with Alzheimer’s disease pathology in possible primary progressive aphasia. Acta Neuropathol 114:347–357. doi:10.1007/s00401-007-0266-x PubMedGoogle Scholar
  242. 242.
    Nagy Z, Esiri MM, Cato AM, Smith AD (1997) Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol 94:6–15. doi:10.1007/s004010050665 PubMedGoogle Scholar
  243. 243.
    Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Smith A, Barnetson L, Smith AD (1995) Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria. Dementia 6:21–31PubMedGoogle Scholar
  244. 244.
    Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt–Jakob disease. Brain Res 541:163–166. doi:10.1016/0006-8993(91)91092-F PubMedGoogle Scholar
  245. 245.
    Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577. doi:10.1001/jama.283.12.1571 PubMedGoogle Scholar
  246. 246.
    Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14. doi:10.1097/NEN.0b013e3181919a48 PubMedGoogle Scholar
  247. 247.
    Neuropathology Group, Medical Research Council Cognitive Function and Aging Study (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–175Google Scholar
  248. 248.
    Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D, Bayer A, Games D, Seubert P, Schenk D, Holmes C (2006) Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 65:1040–1048. doi:10.1097/01.jnen.0000240466.10758.ce PubMedGoogle Scholar
  249. 249.
    Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140. doi:10.1523/JNEUROSCI.1202-06.2006 PubMedGoogle Scholar
  250. 250.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421. doi:10.1016/S0896-6273(03)00434-3 PubMedGoogle Scholar
  251. 251.
    Oddo S, Caccamo A, Smith IF, Green KN, LaFerla FM (2006) A dynamic relationship between intracellular and extracellular pools of Abeta. Am J Pathol 168:184–194. doi:10.2353/ajpath.2006.050593 PubMedGoogle Scholar
  252. 252.
    Ohyagi Y, Tsuruta Y, Motomura K, Miyoshi K, Kikuchi H, Iwaki T, Taniwaki T, Kira J (2007) Intraneuronal amyloid beta42 enhanced by heating but counteracted by formic acid. J Neurosci Methods 159:134–138. doi:10.1016/j.jneumeth.2006.06.010 PubMedGoogle Scholar
  253. 253.
    Oide T, Kinoshita T, Arima K (2006) Regression stage senile plaques in the natural course of Alzheimer’s disease. Neuropathol Appl Neurobiol 32:539–556. doi:10.1111/j.1365-2990.2006.00767.x PubMedGoogle Scholar
  254. 254.
    Oyanagi K, Takahashi H, Wakabayashi K, Ikuta F (1988) Selective decrease of large neurons in the neostriatum in progressive supranuclear palsy. Brain Res 458:218–223. doi:10.1016/0006-8993(88)90464-7 PubMedGoogle Scholar
  255. 255.
    Padmanabhan J, Levy M, Dickson DW, Potter H (2006) Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain 129:3020–3034. doi:10.1093/brain/awl255 PubMedGoogle Scholar
  256. 256.
    Pearson AG, Byrne UT, MacGibbon GA, Faull RL, Dragunow M (2006) Activated c-Jun is present in neurofibrillary tangles in Alzheimer’s disease brains. Neurosci Lett 398:246–250. doi:10.1016/j.neulet.2006.01.031 PubMedGoogle Scholar
  257. 257.
    Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaques neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 84:3033–3036. doi:10.1073/pnas.84.9.3033 PubMedGoogle Scholar
  258. 258.
    Perry G, Siedlak SL, Richey P, Kawai M, Cras P, Kalaria RN, Galloway PG, Scardina JM, Cordell B, Greenberg BD et al (1991) Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer’s disease. J Neurosci 11:3679–3683PubMedGoogle Scholar
  259. 259.
    Phinney AL, Deller T, Stalder M, Calhoun ME, Frotscher M, Sommer B, Staufenbiel M, Jucker M (1999) Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J Neurosci 19:8552–8559PubMedGoogle Scholar
  260. 260.
    Pollanen P, Markiewicz P, Bergeron C, Goh MC (1994) Twisted ribbon structure of paired helical filaments revealed by atomic force microscopy. Am J Pathol 144:869–873PubMedGoogle Scholar
  261. 261.
    Porzig R, Singer D, Hoffmann R (2007) Epitope mapping of mAbs AT8 and Tau5 directed against hyperphosphorylated regions of the human tau protein. Biochem Biophys Res Commun 358:644–649. doi:10.1016/j.bbrc.2007.04.187 PubMedGoogle Scholar
  262. 262.
    Price DL, Altschuler RJ, Struble RG, Casanova MF, Cork LC, Murphy DB (1986) Sequestration of tubulin in neurons in Alzheimer’s disease. Brain Res 385:305–310. doi:10.1016/0006-8993(86)91077-2 PubMedGoogle Scholar
  263. 263.
    Probst A, Anderton BH, Brion JP, Ulrich J (1989) Senile plaque neurites fail to demonstrate anti-paired helical filament and anti-microtubule-associated protein tau immunoreactive proteins in the absence of neurofibrillary tangles in the neocortex. Acta Neuropathol 77:430–436. doi:10.1007/BF00687379 PubMedGoogle Scholar
  264. 264.
    Probst A, Basler V, Bron B, Ulrich J (1983) Neuritic plaques in senile dementia of the Alzheimer type: a Golgi analysis in the hippocampal region. Brain Res 268:249–254. doi:10.1016/0006-8993(83)90490-0 PubMedGoogle Scholar
  265. 265.
    Probst A, Herzig MC, Mistl C, Ipsen S, Tolnay M (2001) Perisomatic granules (non-plaque dystrophic neurites) of hippocampal CA1 in Alzheimer’s disease and Pick’s disease: a lesion distinct from granulovacuolar degeneration. Acta Neuropathol 102:636–644PubMedGoogle Scholar
  266. 266.
    Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545. doi:10.1523/JNEUROSCI.2692-08.2008 PubMedGoogle Scholar
  267. 267.
    Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol 101:305–310PubMedGoogle Scholar
  268. 268.
    Redlich E (1898) Über miliare sklerose der Hirnrinde bei seniler Atrophie. Jahrb Psychol Neurol 17:208–216Google Scholar
  269. 269.
    Regeur L, Badsberg Jensen G, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 15:347–352. doi:10.1016/0197-4580(94)90030-2 PubMedGoogle Scholar
  270. 270.
    Renner JA, Burns JM, Hou CE, McKeel DW Jr, Storandt M, Morris JC (2004) Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology 63:1175–1180PubMedGoogle Scholar
  271. 271.
    Riley KP, Snowdon DA, Markesbery WR (2002) Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 51:567–577. doi:10.1002/ana.10161 PubMedGoogle Scholar
  272. 272.
    Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain Res 1228:189–198. doi:10.1016/j.brainres.2008.06.094 PubMedGoogle Scholar
  273. 273.
    Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26. doi:10.1038/ng1718 PubMedGoogle Scholar
  274. 274.
    Rüb U, Del Tredici K, Del Turco D, Braak H (2002) The intralaminar nuclei assigned to the medial pain system and other components of this system are early and progressively affected by the Alzheimer’s disease-related cytoskeletal pathology. J Chem Neuroanat 23:279–290. doi:10.1016/S0891-0618(02)00007-8 PubMedGoogle Scholar
  275. 275.
    Rüb U, Del Tredici K, Schultz C, Thal DR, Braak E, Braak H (2001) The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer’s disease-related cytoskeletal pathology. Acta Neuropathol 101:555–564PubMedGoogle Scholar
  276. 276.
    Ruben GC, Iqbal K, Grundke-Iqbal I (1995) Helical ribbon morphology in neurofibrillary tangles of paired helical filaments. In: Iqbal K, Mortimer JA, Winbladet B, Wisniewski HM (eds) Research advances in Alzheimer’s disease and related disorders. Wiley, Chichester, pp 477–485Google Scholar
  277. 277.
    Rufenacht P, Guntert A, Bohrmann B, Ducret A, Dobeli H (2005) Quantification of the A beta peptide in Alzheimer’s plaques by laser dissection microscopy combined with mass spectrometry. J Mass Spectrom 40:193–201. doi:10.1002/jms.739 PubMedGoogle Scholar
  278. 278.
    Sassin I, Schultz C, Thal DR, Rub U, Arai K, Braak E, Braak H (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100:259–269. doi:10.1007/s004019900178 PubMedGoogle Scholar
  279. 279.
    Schechter R, Yen SH, Terry RD (1981) Fibrous astrocytes in senile dementia of the Alzheimer type. J Neuropathol Exp Neurol 40:95–101. doi:10.1097/00005072-198103000-00002 PubMedGoogle Scholar
  280. 280.
    Scheff SW, Price DA (1993) Synapse loss in the temporal lobe in Alzheimer’s disease. Ann Neurol 33:190–199. doi:10.1002/ana.410330209 PubMedGoogle Scholar
  281. 281.
    Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508. doi:10.1212/01.wnl.0000260698.46517.8f PubMedGoogle Scholar
  282. 282.
    Scheff SW, Sparks DL, Price DA (1996) Quantitative assessment of synaptic density in the outer molecular layer of the hippocampal dentate gyrus in Alzheimer’s disease. Dementia 7:226–232PubMedGoogle Scholar
  283. 283.
    Schmidt M, Lee V, Trojanowski J (1991) Comparative epitope analysis of neuronal cytoskeletal proteins in Alzheimer’s disease senile plaque, neurites and neuropil threads. Lab Invest 64:352–357PubMedGoogle Scholar
  284. 284.
    Schultz C, Braak H, Braak E (1996) A sex difference in neurodegeneration of the human hypothalamus. Neurosci Lett 212:103–106. doi:10.1016/0304-3940(96)12787-7 PubMedGoogle Scholar
  285. 285.
    Schultz C, Ghebremedhin E, Braak H, Braak E (1997) Neurofibrillary pathology in the human paraventricular and supraoptic nuclei. Acta Neuropathol 94:99–102. doi:10.1007/s004010050679 PubMedGoogle Scholar
  286. 286.
    Schultz C, Ghebremedhin E, Del Tredici K, Rub U, Braak H (2004) High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25:397–405. doi:10.1016/S0197-4580(03)00113-1 PubMedGoogle Scholar
  287. 287.
    Selden N, Mesulam MM, Geula C (1994) Human striatum: the distribution of neurofibrillary tangles in Alzheimer’s disease. Brain Res 648:327–331. doi:10.1016/0006-8993(94)91136-3 PubMedGoogle Scholar
  288. 288.
    Selkoe DJ (2008) Biochemistry and molecular biology of amyloid beta-protein and the mechanism of Alzheimer’s disease. Handb Clin Neurol 89:245–260. doi:10.1016/S0072-9752(07)01223-7 PubMedGoogle Scholar
  289. 289.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi:10.1038/nm1782 PubMedGoogle Scholar
  290. 290.
    Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22:9794–9799PubMedGoogle Scholar
  291. 291.
    Shepherd CE, Gregory GC, Vickers JC, Halliday GM (2005) Novel ‘inflammatory plaque’ pathology in presenilin-1 Alzheimer’s disease. Neuropathol Appl Neurobiol 31:503–511. doi:10.1111/j.1365-2990.2005.00667.x PubMedGoogle Scholar
  292. 292.
    Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-ss(-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499. doi:10.1172/JCI10498 PubMedGoogle Scholar
  293. 293.
    Shimohama S, Kamiya S, Taniguchi T, Akagawa K, Kimura J (1997) Differential involvement of synaptic vesicle and presynaptic plasma membrane proteins in Alzheimer’s disease. Biochem Biophys Res Commun 236:239–242. doi:10.1006/bbrc.1997.6940 PubMedGoogle Scholar
  294. 294.
    Shin RW, Ogino K, Shimabuku A, Taki T, Nakashima H, Ishihara T, Kitamoto T (2007) Amyloid precursor protein cytoplasmic domain with phospho-Thr668 accumulates in Alzheimer’s disease and its transgenic models: a role to mediate interaction of Abeta and tau. Acta Neuropathol 113:627–636. doi:10.1007/s00401-007-0211-z PubMedGoogle Scholar
  295. 295.
    Smith TW, Anwer U, DeGirolami U, Drachman DA (1987) Vacuolar change in Alzheimer’s disease. Arch Neurol 44:1225–1228PubMedGoogle Scholar
  296. 296.
    Snow AD, Wight TN (1989) Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses. Neurobiol Aging 10:481–497. doi:10.1016/0197-4580(89)90108-5 PubMedGoogle Scholar
  297. 297.
    Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR (1997) Brain infarction and the clinical expression of Alzheimer’s disease: the nun study. JAMA 277:813–817. doi:10.1001/jama.277.10.813 PubMedGoogle Scholar
  298. 298.
    Spires-Jones TL, Meyer-Luehmann M, Osetek JD, Jones PB, Stern EA, Bacskai BJ, Hyman BT (2007) Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am J Pathol 171:1304–1311. doi:10.2353/ajpath.2007.070055 PubMedGoogle Scholar
  299. 299.
    Stadelmann C, Bruck W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57:456–464. doi:10.1097/00005072-199805000-00009 PubMedGoogle Scholar
  300. 300.
    Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease: evidence for apoptotic cell death. Am J Pathol 155:1459–1466PubMedGoogle Scholar
  301. 301.
    Steinerman JR, Irizarry M, Scarmeas N, Raju S, Brandt J, Albert M, Blacker D, Hyman B, Stern Y (2008) Distinct pools of beta-amyloid in Alzheimer disease-affected brain: a clinicopathologic study. Arch Neurol 65:906–912. doi:10.1001/archneur.65.7.906 PubMedGoogle Scholar
  302. 302.
    Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136PubMedGoogle Scholar
  303. 303.
    Stoltenberg M, Bruhn M, Sondergaard C, Doering P, West MJ, Larsen A, Troncoso JC, Danscher G (2005) Immersion autometallographic tracing of zinc ions in Alzheimer beta-amyloid plaques. Histochem Cell Biol 123:605–611. doi:10.1007/s00418-005-0787-0 PubMedGoogle Scholar
  304. 304.
    Takahashi M, Iseki E, Kosaka K (2000) Cdk5 and munc-18/p67 co-localization in early stage neurofibrillary tangles-bearing neurons in Alzheimer type dementia brains. J Neurol Sci 172:63–69. doi:10.1016/S0022-510X(99)00291-9 PubMedGoogle Scholar
  305. 305.
    Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599. doi:10.1523/JNEUROSCI.5167-03.2004 PubMedGoogle Scholar
  306. 306.
    Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879PubMedGoogle Scholar
  307. 307.
    Teipel SJ, Stahl R, Dietrich O, Schoenberg SO, Perneczky R, Bokde AL, Reiser MF, Moller HJ, Hampel H (2007) Multivariate network analysis of fiber tract integrity in Alzheimer’s disease. Neuroimage 34:985–995. doi:10.1016/j.neuroimage.2006.07.047 PubMedGoogle Scholar
  308. 308.
    ter Laak HJ, Renkawek K, van Workum FP (1994) The olfactory bulb in Alzheimer disease: a morphologic study of neuron loss, tangles, and senile plaques in relation to olfaction. Alzheimer Dis Assoc Disord 8:38–48. doi:10.1097/00002093-199408010-00007 PubMedGoogle Scholar
  309. 309.
    Terry RD, Gonatas JK, Weiss M (1964) Ultrastructural studies in Alzheimer presenile dementia. Am J Pathol 44:269–297PubMedGoogle Scholar
  310. 310.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. doi:10.1002/ana.410300410 PubMedGoogle Scholar
  311. 311.
    Teter B, Ashford JW (2002) Neuroplasticity in Alzheimer’s disease. J Neurosci Res 70:402–437. doi:10.1002/jnr.10441 PubMedGoogle Scholar
  312. 312.
    Thal DR, Capetillo-Zarate E, Schultz C, Rub U, Saido TC, Yamaguchi H, Haass C, Griffin WS, Del Tredici K, Braak H, Ghebremedhin E (2005) Apolipoprotein E co-localizes with newly formed amyloid beta-protein (Abeta) deposits lacking immunoreactivity against N-terminal epitopes of Abeta in a genotype-dependent manner. Acta Neuropathol 110:459–471. doi:10.1007/s00401-005-1053-1 PubMedGoogle Scholar
  313. 313.
    Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301PubMedGoogle Scholar
  314. 314.
    Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Tredici KD, Braak H (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:282–293PubMedGoogle Scholar
  315. 315.
    Thal DR, Griffin WS, de Vos RA, Ghebremedhin E (2008) Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 115:599–609. doi:10.1007/s00401-008-0366-2 PubMedGoogle Scholar
  316. 316.
    Thal DR, Hartig W, Schober R (1998) Stage-correlated distribution of type 1 and 2 dystrophic neurites in cortical and hippocampal plaques in Alzheimer’s disease. J Brain Res 39:175–181Google Scholar
  317. 317.
    Thal DR, Hartig W, Schober R (1999) Diffuse plaques in the molecular layer show intracellular A beta(8-17)-immunoreactive deposits in subpial astrocytes. Clin Neuropathol 18:226–231PubMedGoogle Scholar
  318. 318.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800PubMedGoogle Scholar
  319. 319.
    Thal DR, Sassin I, Schultz C, Haass C, Braak E, Braak H (1999) Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. Neuropathol Exp Neurol 58:210–216. doi:10.1097/00005072-199902000-00010 Google Scholar
  320. 320.
    Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 100:608–617. doi:10.1007/s004010000242 PubMedGoogle Scholar
  321. 321.
    Tiraboschi P, Sabbagh MN, Hansen LA, Salmon DP, Merdes A, Gamst A, Masliah E, Alford M, Thal LJ, Corey-Bloom J (2004) Alzheimer disease without neocortical neurofibrillary tangles: “a second look. Neurology 62:1141–1147PubMedGoogle Scholar
  322. 322.
    Torp R, Head E, Cotman CW (2000) Ultrastructural analyses of beta-amyloid in the aged dog brain: neuronal beta-amyloid is localized to the plasma membrane. Prog Neuropsychopharmacol Biol Psychiatry 24:801–810. doi:10.1016/S0278-5846(00)00107-X PubMedGoogle Scholar
  323. 323.
    Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510. doi:10.1046/j.1365-2990.2003.00453.x PubMedGoogle Scholar
  324. 324.
    Uchihara T, Duyckaerts C, He Y, Kobayashi K, Seilhean D, Amouyel P, Hauw JJ (1995) ApoE immunoreactivity and microglial cells in Alzheimer’s disease brain. Neurosci Lett 195:5–8. doi:10.1016/0304-3940(95)11763-M PubMedGoogle Scholar
  325. 325.
    Uchihara T, Duyckaerts C, Lazarini F, Mokhtari K, Seilhean D, Amouyel P, Hauw J-J (1996) Inconstant apolipoprotein E (ApoE)-like immunoreactivity in amyloid beta protein deposits: relationship with APOE genotype in aging brain and Alzheimer’s disease. Acta Neuropathol 92:180–185. doi:10.1007/s004010050506 PubMedGoogle Scholar
  326. 326.
    Uchihara T, Kondo H, Kosaka K, Tsukagoshi H (1992) Selective loss of nigral neurons in Alzheimer’s disease: a morphometric study. Acta Neuropathol 83:271–276. doi:10.1007/BF00296789 PubMedGoogle Scholar
  327. 327.
    Uchihara T, Nakamura A, Yamazaki M, Mori O (2001) Evolution from pretangle neurons to neurofibrillary tangles monitored by thiazin red combined with Gallyas method and double immunofluorescence. Acta Neuropathol 101:535–539PubMedGoogle Scholar
  328. 328.
    Uchihara T, Nakamura A, Yamazaki M, Mori O, Ikeda K, Tsuchiya K (2001) Different conformation of neuronal tau deposits distinguished by double immunofluorescence with AT8 and thiazin red combined with Gallyas method. Acta Neuropathol 102:462–466PubMedGoogle Scholar
  329. 329.
    Uchikado H, Lin WL, DeLucia MW, Dickson DW (2006) Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol 65:685–697. doi:10.1097/01.jnen.0000225908.90052.07 PubMedGoogle Scholar
  330. 330.
    van de Nes JA, Konermann S, Nafe R, Swaab DF (2006) Beta-protein/A4 deposits are not associated with hyperphosphorylated tau in somatostatin neurons in the hypothalamus of Alzheimer’s disease patients. Acta Neuropathol 111:126–138. doi:10.1007/s00401-005-0018-8 PubMedGoogle Scholar
  331. 331.
    Veerhuis R, Van Breemen MJ, Hoozemans JM, Morbin M, Ouladhadj J, Tagliavini F, Eikelenboom P (2003) Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol 105:135–144PubMedGoogle Scholar
  332. 332.
    Verbeek MM, Otte-Höller I, Westphal JR, Wesseling P, Ruiter DJ, de Waal RMW (1994) Accumulation of intercellular adhesion molecule-1 in senile plaques in brain tissue of patients with Alzheimer’s disease. Am J Pathol 144:104–116PubMedGoogle Scholar
  333. 333.
    Vereecken TH, Vogels OJ, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15:45–54. doi:10.1016/0197-4580(94)90143-0 PubMedGoogle Scholar
  334. 334.
    Vogels OJ, Broere CA, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BP (1990) Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13. doi:10.1016/0197-4580(90)90056-6 PubMedGoogle Scholar
  335. 335.
    Vonsattel JP, Myers RH, Hedley-White ET, Ropper AH, Bird ED, Richardson EP Jr (1991) Cerebral amyloid angiopathy without and with cerebral hemorrhage: a comparative histologic study. Ann Neurol 30:637–649. doi:10.1002/ana.410300503 PubMedGoogle Scholar
  336. 336.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539. doi:10.1038/416535a PubMedGoogle Scholar
  337. 337.
    Wang D, Munoz DG (1995) Qualitative and quantitative differences in senile plaque dystrophic neurites of Alzheimer’s disease and normal aged brain. J Neuropathol Exp Neurol 54:548–556. doi:10.1097/00005072-199507000-00009 PubMedGoogle Scholar
  338. 338.
    Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68PubMedGoogle Scholar
  339. 339.
    Wegiel J, Kuchna I, Nowicki K, Frackowiak J, Mazur-Kolecka B, Imaki H, Mehta PD, Silverman WP, Reisberg B, Deleon M, Wisniewski T, Pirttilla T, Frey H, Lehtimaki T, Kivimaki T, Visser FE, Kamphorst W, Potempska A, Bolton D, Currie JR, Miller DL (2007) Intraneuronal Abeta immunoreactivity is not a predictor of brain amyloidosis-beta or neurofibrillary degeneration. Acta Neuropathol 113:389–402. doi:10.1007/s00401-006-0191-4 PubMedGoogle Scholar
  340. 340.
    Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC, LeVine H (2001) The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol Aging 22:49–61. doi:10.1016/S0197-4580(00)00181-0 PubMedGoogle Scholar
  341. 341.
    Weis S, Jellinger K, Wenger E (1991) Morphometry of the corpus callosum in normal aging and Alzheimer’s disease. J Neural Transm Suppl 33:35–38PubMedGoogle Scholar
  342. 342.
    Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14. doi:10.1007/s00401-008-0457-0 PubMedGoogle Scholar
  343. 343.
    Wen GY, Wisniewski HM, Blondal H, Benedikz E, Frey H, Pirttila T, Rudelli R, Kim KS (1994) Presence of non-fibrillar amyloid beta protein in skin biopsies of Alzheimer’s disease (AD), Down’s syndrome and non-AD normal persons. Acta Neuropathol 88:201–206PubMedGoogle Scholar
  344. 344.
    West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer disease. Lancet 344:769–772. doi:10.1016/S0140-6736(94)92338-8 PubMedGoogle Scholar
  345. 345.
    Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD, Vemuri P, Senjem ML, Parisi JE, Knopman DS, Boeve BF, Petersen RC, Dickson DW, Jack CR Jr (2008) MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 71:743–749. doi:10.1212/01.wnl.0000324924.91351.7d PubMedGoogle Scholar
  346. 346.
    Wirths O, Multhaup G, Czech C, Blanchard V, Moussaoui S, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta- amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306:116–120. doi:10.1016/S0304-3940(01)01876-6 PubMedGoogle Scholar
  347. 347.
    Wisniewski HM, Sadowski M, Jakubowska-Sadowska K, Tarnawski M, Wegiel J (1998) Diffuse, lake-like amyloid-beta deposits in the parvopyramidal layer of the presubiculum in Alzheimer disease. J Neuropathol Exp Neurol 57:674–683. doi:10.1097/00005072-199807000-00004 PubMedGoogle Scholar
  348. 348.
    Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5:288–294. doi:10.1002/ana.410050311 PubMedGoogle Scholar
  349. 349.
    WorkingGroup (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18(4 Suppl):S1–S2. doi:10.1016/S0197-4580(97)00057-2
  350. 350.
    Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152. doi:10.1111/j.1600-079X.2004.00196.x PubMedGoogle Scholar
  351. 351.
    Zekry D, Duyckaerts C, Belmin J, Geoffre C, Herrmann F, Moulias R, Hauw J-J (2003) The vascular lesions in vascular and mixed dementia: the weight of functional neuroanatomy. Neurobiol Aging 24:213–219. doi:10.1016/S0197-4580(02)00066-0 PubMedGoogle Scholar
  352. 352.
    Zekry D, Duyckaerts C, Moulias R, Belmin J, Geoffre C, Herrmann F, Hauw J-J (2002) Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol 103:481–487. doi:10.1007/s00401-001-0493-5 PubMedGoogle Scholar
  353. 353.
    Zhao M, Su J, Head E, Cotman CW (2003) Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer’s disease. Neurobiol Dis 14:391–403. doi:10.1016/j.nbd.2003.07.006 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Charles Duyckaerts
    • 1
    • 2
  • Benoît Delatour
    • 2
  • Marie-Claude Potier
    • 2
  1. 1.Laboratoire de Neuropathologie Escourolle, APHP, Hôpital de La Salpêtrière et Université Pierre et Marie CurieParis UniversitasParis Cedex 13France
  2. 2.Team 103, Inserm UMRS 975, CNRS UMR 7225Centre de Recherche Institut du Cerveau et de la MoëlleParisFrance

Personalised recommendations