Acta Neuropathologica

, Volume 117, Issue 6, pp 599–611 | Cite as

Oncogenic role of microRNAs in brain tumors

  • Jesse Chung-sean Pang
  • Wai Kei Kwok
  • Zhongping Chen
  • Ho-Keung Ng


MicroRNAs (miRNAs) are short non-protein-coding RNAs that function as key regulators of diverse biological processes through negative control on gene expression at the post-transcriptional level. Emerging evidence indicates that miRNAs play an important role in the development of human cancers, with their deregulation resulting in altered activity of downstream tumor suppressors, oncogenes and other signaling molecules. Recent years have seen considerable progress in miRNA research in brain tumors, particularly in glioblastomas and medulloblastomas, providing novel insights into the pathogenesis of these malignant lesions. Expression profiling has unveiled miRNA signatures that not only distinguish brain tumors from normal tissues, but can also differentiate histotypes or molecular subtypes with altered genetic pathways. Moreover, specific miRNA subsets may have potential diagnostic and prognostic values in some brain tumors. Several deregulated miRNAs uncovered in glioblastomas and medulloblastomas have their gene targets and the associated genetic pathways identified. This review summarizes recent findings of miRNA study in brain tumors.


Brain tumors Glioblastoma Medulloblastoma MicroRNA Pituitary adenoma 



The authors apologize to those colleagues whose outstanding work could not be cited due to space constraints. This study was supported by the State Key Laboratory in Oncology in South China, Research Grants Council of Hong Kong and the Shanghai-Hong Kong Anson Research Foundation.


  1. 1.
    Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323. doi: 10.1210/jc.2008-1451 PubMedCrossRefGoogle Scholar
  2. 2.
    Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279. doi: 10.1261/rna.2183803 PubMedCrossRefGoogle Scholar
  3. 3.
    Aoki H, Yokoyama T, Fujiwara K, Tari AM, Sawaya R, Suki D, Hess KR, Aldape KD, Kondo S, Kumar R, Kondo Y (2007) Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin Cancer Res 13:6603–6609. doi: 10.1158/1078-0432.CCR-07-0145 PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi: 10.1016/S0092-8674(04)00045-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Baudis M, Cleary ML (2001) an online repository for molecular cytogenetic aberration data. Bioinformatics 17:1228–1229. doi: 10.1093/bioinformatics/17.12.1228 PubMedCrossRefGoogle Scholar
  6. 6.
    Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005) miR-15a and miR-16–1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285PubMedCrossRefGoogle Scholar
  7. 7.
    Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377. doi: 10.1002/jcp.20832 PubMedCrossRefGoogle Scholar
  8. 8.
    Cadieux B, Ching TT, VandenBerg SR, Costello JF (2006) Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 66:8469–8476. doi: 10.1158/0008-5472.CAN-06-1547 PubMedCrossRefGoogle Scholar
  9. 9.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529. doi: 10.1073/pnas.242606799 PubMedCrossRefGoogle Scholar
  10. 10.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi: 10.1073/pnas.0307323101 PubMedCrossRefGoogle Scholar
  11. 11.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  12. 12.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033. doi: 10.1158/0008-5472.CAN-05-0137 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. doi: 10.1038/cr.2008.282 PubMedCrossRefGoogle Scholar
  14. 14.
    Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, Qiang B, Yuan J, Sun M, Peng X (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205. doi: 10.1016/j.canlet.2008.06.034 PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297. doi: 10.1093/nar/gki200 PubMedCrossRefGoogle Scholar
  16. 16.
    Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358. doi: 10.1016/j.bbrc.2005.07.030 PubMedCrossRefGoogle Scholar
  17. 17.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949. doi: 10.1073/pnas.0506654102 PubMedCrossRefGoogle Scholar
  18. 18.
    Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germanò A, Vita G, Tomasello F (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol [Epub ahead of print]Google Scholar
  19. 19.
    Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000. doi: 10.1158/0008-5472.CAN-07-1045 PubMedCrossRefGoogle Scholar
  20. 20.
    Eberhart CG, Brat DJ, Cohen KJ, Burger PC (2000) Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 3:346–352. doi: 10.1007/s100249910049 PubMedCrossRefGoogle Scholar
  21. 21.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726. doi: 10.1038/nmeth1079 PubMedCrossRefGoogle Scholar
  22. 22.
    Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60. doi: 10.1016/j.ymeth.2007.11.001 PubMedCrossRefGoogle Scholar
  23. 23.
    Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, Santoro M, Croce CM, Fusco A (2002) Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198. doi: 10.1038/sj.onc.1205428 PubMedCrossRefGoogle Scholar
  24. 24.
    Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008) Concerted microRNA control of hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627. doi: 10.1038/emboj.2008.172 PubMedCrossRefGoogle Scholar
  25. 25.
    Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, Nofroni I, Laneve P, Gioia U, Caffarelli E, Bozzoni I, Screpanti I, Gulino A (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577. doi: 10.1002/ijc.23948 PubMedCrossRefGoogle Scholar
  26. 26.
    Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842. doi: 10.1038/nrg2455 PubMedCrossRefGoogle Scholar
  27. 27.
    Fuller C, Fouladi M, Gajjar A, Dalton J, Sanford RA, Helton KJ (2006) Chromosome 17 abnormalities in pediatric neuroblastic tumor with abundant neuropil and true rosettes. Am J Clin Pathol 126:277–283. doi: 10.1309/TFBX1LWQ93MXQBAW PubMedCrossRefGoogle Scholar
  28. 28.
    Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380. doi: 10.1128/MCB.00479-08 PubMedCrossRefGoogle Scholar
  29. 29.
    Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D (2008) MIR-451 and Imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun 376:86–90. doi: 10.1016/j.bbrc.2008.08.107 PubMedCrossRefGoogle Scholar
  30. 30.
    Gessi M, Giangaspero F, Lauriola L, Gardiman M, Scheithauer BW, Halliday W, Hawkins C, Rosenblum MK, Burger PC, Eberhart CG (2009) Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol 33:211–217. doi: 10.1097/PAS.0b013e318186235b PubMedCrossRefGoogle Scholar
  31. 31.
    Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009PubMedGoogle Scholar
  32. 32.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130. doi: 10.1158/0008-5472.CAN-08-2629 PubMedCrossRefGoogle Scholar
  33. 33.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111. doi: 10.1093/nar/gkh023 PubMedCrossRefGoogle Scholar
  34. 34.
    Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D (1998) Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 8:1195–1198. doi: 10.1016/S0960-9822(07)00493-9 PubMedCrossRefGoogle Scholar
  35. 35.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi: 10.1038/nature03552 PubMedCrossRefGoogle Scholar
  36. 36.
    Iaquinta PJ, Lees JA (2007) Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19:649–657. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  37. 37.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707. doi: 10.1158/0008-5472.CAN-07-1936 PubMedCrossRefGoogle Scholar
  38. 38.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363. doi: 10.1371/journal.pbio.0020363 PubMedCrossRefGoogle Scholar
  39. 39.
    Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572. doi: 10.1158/0008-5472.CAN-07-6639 PubMedCrossRefGoogle Scholar
  40. 40.
    Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. doi: 10.1038/nrm1644 PubMedCrossRefGoogle Scholar
  41. 41.
    Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13:507–518PubMedCrossRefGoogle Scholar
  42. 42.
    Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864. doi: 10.1634/stemcells.2005-0441 PubMedCrossRefGoogle Scholar
  43. 43.
    Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689. doi: 10.1038/nature04303 PubMedCrossRefGoogle Scholar
  44. 44.
    Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35:2885–2892. doi: 10.1093/nar/gkm024 PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–4571. doi: 10.1038/nrc1892 PubMedCrossRefGoogle Scholar
  46. 46.
    Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I, Caffarelli E (2007) The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 104:7957–7962. doi: 10.1073/pnas.0700071104 PubMedCrossRefGoogle Scholar
  47. 47.
    Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD (2008) Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 28:11720–11730. doi: 10.1523/JNEUROSCI.1932-08.2008 PubMedCrossRefGoogle Scholar
  48. 48.
    Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675. doi: 10.1111/j.1365-2141.2008.07077.x PubMedCrossRefGoogle Scholar
  49. 49.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi: 10.1016/0092-8674(93)90529-Y PubMedCrossRefGoogle Scholar
  50. 50.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798. doi: 10.1016/S0092-8674(03)01018-3 PubMedCrossRefGoogle Scholar
  51. 51.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi: 10.1016/j.cell.2004.12.035 PubMedCrossRefGoogle Scholar
  52. 52.
    Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y, Zhou L, Ng HK (2009) miR-124 is frequently downregulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol (in press)Google Scholar
  53. 53.
    Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18:113–121. doi: 10.1111/j.1750-3639.2007.00121.x PubMedCrossRefGoogle Scholar
  54. 54.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi: 10.1038/nature03702 PubMedCrossRefGoogle Scholar
  55. 55.
    Lukiw WJ, Cui JG, Li YY, Culicchia F (2009) Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol 91:27–32. doi: 10.1007/s11060-008-9688-0 PubMedCrossRefGoogle Scholar
  56. 56.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. doi: 10.1016/j.molcel.2007.07.015 PubMedCrossRefGoogle Scholar
  57. 57.
    Malzkorn B, Wolter M, Grzendowski M, Stühler K, Reifenberger G (2008) Identification and functional characterization of microRNAs involved in the malignant progression of astrocytic gliomas. Acta Neuropathol 116:350Google Scholar
  58. 58.
    Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11:17–22. doi: 10.1016/j.molmed.2004.11.008 PubMedCrossRefGoogle Scholar
  59. 59.
    Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773–2780. doi: 10.1158/0008-5472.CAN-07-6754 PubMedCrossRefGoogle Scholar
  60. 60.
    Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE, Neben K, Fiegler H, Carter NP, Reifenberger G, Korshunov A, Lichter P (2005) Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 23:8853–8862. doi: 10.1200/JCO.2005.02.8589 PubMedCrossRefGoogle Scholar
  61. 61.
    Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129. doi: 10.1053/j.gastro.2006.02.057 PubMedCrossRefGoogle Scholar
  62. 62.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658. doi: 10.1053/j.gastro.2007.05.022 PubMedCrossRefGoogle Scholar
  63. 63.
    Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N (2008) MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol [Epub ahead of print]Google Scholar
  64. 64.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161. doi: 10.1038/nmeth717 PubMedCrossRefGoogle Scholar
  65. 65.
    Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191. doi: 10.1261/rna.2258506 PubMedCrossRefGoogle Scholar
  66. 66.
    Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172. doi: 10.1158/0008-5472.CAN-08-1305 PubMedCrossRefGoogle Scholar
  67. 67.
    Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152. doi: 10.1016/j.addr.2007.03.008 PubMedCrossRefGoogle Scholar
  68. 68.
    Pfister S, Remke M, Castoldi M, Bai AH, Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P, Korshunov A (2009) Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol 117:457–464. doi: 10.1007/s00401-008-0467-y PubMedCrossRefGoogle Scholar
  69. 69.
    Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90:1–7. doi: 10.1007/s11060-008-9624-3 PubMedCrossRefGoogle Scholar
  70. 70.
    Piva R, Cavalla P, Bortolotto S, Cordera S, Richiardi P, Schiffer D (1997) p27/kip1 expression in human astrocytic gliomas. Neurosci Lett 234:127–130. doi: 10.1016/S0304-3940(97)00688-5 PubMedCrossRefGoogle Scholar
  71. 71.
    Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, Kudo E, Sano T (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441. doi: 10.1038/modpathol.2008.202 PubMedCrossRefGoogle Scholar
  72. 72.
    Reddy SD, Ohshiro K, Rayala SK, Kumar R (2008) MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68:8195–8200. doi: 10.1158/0008-5472.CAN-08-2103 PubMedCrossRefGoogle Scholar
  73. 73.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi: 10.1038/35002607 PubMedCrossRefGoogle Scholar
  74. 74.
    Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910. doi: 10.1101/gr.2722704 PubMedCrossRefGoogle Scholar
  75. 75.
    Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193. doi: 10.1016/j.brainres.2008.07.085 PubMedCrossRefGoogle Scholar
  76. 76.
    Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi: 10.1186/1741-7015-6-14 PubMedCrossRefGoogle Scholar
  77. 77.
    Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi: 10.1038/ncb1800 PubMedCrossRefGoogle Scholar
  78. 78.
    Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477. doi: 10.1111/j.1460-9568.2005.03978.x PubMedCrossRefGoogle Scholar
  79. 79.
    Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18:89–102. doi: 10.1016/j.semcancer.2008.01.004 PubMedCrossRefGoogle Scholar
  80. 80.
    Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E (2008) Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 10:415–423. doi: 10.2353/jmoldx.2008.080018 PubMedCrossRefGoogle Scholar
  81. 81.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. doi: 10.1016/j.ygyno.2008.04.033 PubMedCrossRefGoogle Scholar
  82. 82.
    Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G, Roussel MF (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106:2812–2817. doi: 10.1073/pnas.0809579106 PubMedCrossRefGoogle Scholar
  83. 83.
    Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer: the polycomb connection. Cell 118:409–418. doi: 10.1016/j.cell.2004.08.005 PubMedCrossRefGoogle Scholar
  84. 84.
    Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749. doi: 10.1101/gad.1519107 PubMedCrossRefGoogle Scholar
  85. 85.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi: 10.1073/pnas.0510565103 PubMedCrossRefGoogle Scholar
  86. 86.
    Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84:6899–6903. doi: 10.1073/pnas.84.19.6899 PubMedCrossRefGoogle Scholar
  87. 87.
    Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393. doi: 10.1016/j.ccr.2008.10.005 PubMedCrossRefGoogle Scholar
  88. 88.
    Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674. doi: 10.1261/rna.642907 PubMedCrossRefGoogle Scholar
  89. 89.
    Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M, Wesley W, Kung HF, Lai L, Lin MC (2009) MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380:205–210. doi: 10.1016/j.bbrc.2008.12.169 PubMedCrossRefGoogle Scholar
  90. 90.
  91. 91.
    Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314:2618–2633. doi: 10.1016/j.yexcr.2008.06.002 PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43–51. doi: 10.1007/s00109-008-0403-6 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jesse Chung-sean Pang
    • 1
    • 2
  • Wai Kei Kwok
    • 1
    • 2
  • Zhongping Chen
    • 3
  • Ho-Keung Ng
    • 1
    • 2
  1. 1.Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongShatinHong Kong
  2. 2.The State Key Laboratory in Oncology in South China, Sir Yue-kong Pao Centre of CancerPrince of Wales HospitalShatinHong Kong
  3. 3.Department of Neurosurgery, Cancer CenterSun Yet-sen UniversityGuangzhouChina

Personalised recommendations