Acta Neuropathologica

, Volume 118, Issue 1, pp 151–166

RNA oxidation in Alzheimer disease and related neurodegenerative disorders



RNA oxidation and its biological effects are less well studied compared to DNA oxidation. However, RNA may be more susceptible to oxidative insults than DNA, for RNA is largely single-stranded and its bases are not protected by hydrogen bonding and less protected by specific proteins. Also, cellular RNA locates in the vicinity of mitochondria, the primary source of reactive oxygen species. Oxidative modification can occur not only in protein-coding RNAs, but also in non-coding RNAs that have been recently revealed to contribute towards the complexity of the mammalian brain. Damage to coding and non-coding RNAs will cause errors in proteins and disturbances in the regulation of gene expression. While less lethal than mutations in the genome and not inheritable, such sublethal damage to cells might be associated with underlying mechanisms of degeneration, especially age-associated neurodegeneration that is commonly found in the elderly population. Indeed, oxidative RNA damage has been described recently in most of the common neurodegenerative disorders including Alzheimer disease, Parkinson disease, dementia with Lewy bodies and amyotrophic lateral sclerosis. Of particular interest, the accumulating evidence obtained from studies on either human samples or experimental models coincidentally suggests that oxidative RNA damage is a feature in vulnerable neurons at early-stage of these neurodegenerative disorders, indicating that RNA oxidation actively contributes to the onset or the development of the disorders. Further investigations aimed at understanding of the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative disorders and lead to better therapeutic strategies.


Alzheimer disease 8-Hydroxyguanosine Neurodegeneration Nucleic acids Oxidative stress RNA 


  1. 1.
    Aas PA, Otterlei M, Falnes PO et al (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863. doi:10.1038/nature01363 PubMedGoogle Scholar
  2. 2.
    Abe T, Isobe C, Murata T, Sato C, Tohgi H (2003) Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett 336:105–108. doi:10.1016/S0304-3940(02)01259-4 PubMedGoogle Scholar
  3. 3.
    Abe T, Tohgi H, Isobe C, Murata T, Sato C (2002) Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J Neurosci Res 70:447–450. doi:10.1002/jnr.10349 PubMedGoogle Scholar
  4. 4.
    Ames BN, Gold LS (1991) Endogenous mutagens and the causes of aging and cancer. Mutat Res 250:3–16. doi:10.1016/0027-5107(91)90157-J PubMedGoogle Scholar
  5. 5.
    Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25. doi:10.1038/nrn1434
  6. 6.
    Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762:1051–1067PubMedGoogle Scholar
  7. 7.
    Barciszewski J, Barciszewska MZ, Siboska G, Rattan SI, Clark BF (1999) Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Rep 26:231–238. doi:10.1023/A:1007058602594 PubMedGoogle Scholar
  8. 8.
    Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. doi:10.1038/nrd1330 PubMedGoogle Scholar
  9. 9.
    Bellacosa A, Moss EG (2003) RNA repair: damage control. Curr Biol 13:R482–R484. doi:10.1016/S0960-9822(03)00408-1 PubMedGoogle Scholar
  10. 10.
    Berg D, Roggendorf W, Schroder U et al (2002) Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005. doi:10.1001/archneur.59.6.999 PubMedGoogle Scholar
  11. 11.
    Brégeon D, Sarasin A (2005) Hypothetical role of RNA damage avoidance in preventing human disease. Mutat Res 577:293–302. doi:10.1016/j.mrfmmm.2005.04.002 PubMedGoogle Scholar
  12. 12.
    Butterfield DA, Reed TT, Perluigi M et al (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248. doi:10.1016/j.brainres.2007.02.084 PubMedGoogle Scholar
  13. 13.
    Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103. doi:10.1146/annurev.neuro.29.051605.112839 PubMedGoogle Scholar
  14. 14.
    Casadesus G, Smith MA, Basu S et al (2007) Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener 2:2. doi:10.1186/1750-1326-2-2
  15. 15.
    Castellani RJ, Harris PL, Sayre LM et al (2001) Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31:175–180. doi:10.1016/S0891-5849(01)00570-6 PubMedGoogle Scholar
  16. 16.
    Chang Y, Kong Q, Shan X et al (2008) Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS One 3:e2849. doi:10.1371/journal.pone.0002849
  17. 17.
    Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49. doi:10.1016/j.cca.2005.09.009 PubMedGoogle Scholar
  18. 18.
    Costa FF (2005) Non-coding RNAs: new players in eukaryotic biology. Gene 357:83–94. doi:10.1016/j.gene.2005.06.019 PubMedGoogle Scholar
  19. 19.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. doi:10.1126/science.7901908 PubMedGoogle Scholar
  20. 20.
    Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666. doi:10.1093/nar/gkj472 PubMedGoogle Scholar
  21. 21.
    Ding Q, Cecarini V, Keller JN (2007) Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 30:31–36. doi:10.1016/j.tins.2006.11.003 PubMedGoogle Scholar
  22. 22.
    Ding Q, Dimayuga E, Markesbery WR, Keller JN (2004) Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures. J Neurochem 91:1211–1218. doi:10.1111/j.1471-4159.2004.02802.x PubMedGoogle Scholar
  23. 23.
    Ding Q, Markesbery WR, Cecarini V, Keller JN (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31:705–710. doi:10.1007/s11064-006-9071-5 PubMedGoogle Scholar
  24. 24.
    Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci 25:9171–9175. doi:10.1523/JNEUROSCI.3040-05.2005 PubMedGoogle Scholar
  25. 25.
    Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61. doi:10.1016/j.mrrev.2003.11.001 PubMedGoogle Scholar
  26. 26.
    Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA and RNA damage in the livers of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522PubMedGoogle Scholar
  27. 27.
    Foksinski M, Rozalski R, Guz J et al (2004) Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med 37:1449–1454. doi:10.1016/j.freeradbiomed.2004.07.014 PubMedGoogle Scholar
  28. 28.
    Furuta A, Iida T, Nakabeppu Y, Iwaki T (2001) Expression of hMTH1 in the hippocampi of control and Alzheimer’s disease. Neuroreport 12:2895–2899. doi:10.1097/00001756-200109170-00028 PubMedGoogle Scholar
  29. 29.
    Gong X, Tao R, Li Z (2006) Quantification of RNA damage by reverse transcription polymerase chain reactions. Anal Biochem 357:58–67. doi:10.1016/j.ab.2006.06.025 PubMedGoogle Scholar
  30. 30.
    Görg B, Qvartskhava N, Keitel V et al (2008) Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 48:567–579. doi:10.1002/hep.22345 PubMedGoogle Scholar
  31. 31.
    Gu G, Reyes PE, Golden GT et al (2002) Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 61:634–639PubMedGoogle Scholar
  32. 32.
    Guentchev M, Siedlak SL, Jarius C et al (2002) Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis 9:275–281. doi:10.1006/nbdi.2002.0477 PubMedGoogle Scholar
  33. 33.
    Guidi I, Galimberti D, Lonati S et al (2006) Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 27:262–269. doi:10.1016/j.neurobiolaging.2005.01.001 PubMedGoogle Scholar
  34. 34.
    Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775. doi:10.1126/science.8209258 PubMedGoogle Scholar
  35. 35.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623. doi:10.1111/j.1471-4159.1992.tb10990.x PubMedGoogle Scholar
  36. 36.
    Hayakawa H, Hofer A, Thelander L et al (1999) Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry (Mosc) 38:3610–3614. doi:10.1021/bi982361l Google Scholar
  37. 37.
    Hayakawa H, Kuwano M, Sekiguchi M (2001) Specific binding of 8-oxoguanine-containing RNA to polynucleotide phosphorylase protein. Biochemistry (Mosc) 40:9977–9982. doi:10.1021/bi010595q Google Scholar
  38. 38.
    Hayakawa H, Sekiguchi M (2006) Human polynucleotide phosphorylase protein in response to oxidative stress. Biochemistry (Mosc) 45:6749–6755. doi:10.1021/bi052585l Google Scholar
  39. 39.
    Hayakawa H, Uchiumi T, Fukuda T et al (2002) Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine. Biochemistry (Mosc) 41:12739–12744. doi:10.1021/bi0201872 Google Scholar
  40. 40.
    Hayashi M, Arai N, Satoh J et al (2002) Neurodegenerative mechanisms in subacute sclerosing panencephalitis. J Child Neurol 17:725–730. doi:10.1177/08830738020170101101 PubMedGoogle Scholar
  41. 41.
    Hayashi M, Araki S, Kohyama J, Shioda K, Fukatsu R (2005) Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev 27:34–38. doi:10.1016/j.braindev.2004.04.001 PubMedGoogle Scholar
  42. 42.
    Hirai K, Aliev G, Nunomura A et al (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023PubMedGoogle Scholar
  43. 43.
    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68:326–337. doi:10.1212/01.wnl.0000252807.38124.a3 PubMedGoogle Scholar
  44. 44.
    Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA (2005) Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem 386:333–337. doi:10.1515/BC.2005.040 PubMedGoogle Scholar
  45. 45.
    Hofer T, Fontana L, Anton SD et al (2008) Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation Res 11:793–799. doi:10.1089/rej.2008.0712 PubMedGoogle Scholar
  46. 46.
    Hofer T, Marzetti E, Xu J et al (2008) Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol 43:563–570. doi:10.1016/j.exger.2008.02.007 PubMedGoogle Scholar
  47. 47.
    Hofer T, Seo AY, Prudencio M, Leeuwenburgh C (2006) A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. Biol Chem 387:103–111. doi:10.1515/BC.2006.014 PubMedGoogle Scholar
  48. 48.
    Honda K, Smith MA, Zhu X et al (2005) Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem 280:20978–20986. doi:10.1074/jbc.M500526200 PubMedGoogle Scholar
  49. 49.
    Honig LS, Kukull W, Mayeux R (2005) Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology 64:494–500PubMedGoogle Scholar
  50. 50.
    Huang WL, King VR, Curran OE et al (2007) A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain 130:3004–3019. doi:10.1093/brain/awm223 PubMedGoogle Scholar
  51. 51.
    Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169PubMedGoogle Scholar
  52. 52.
    Ishibashi T, Hayakawa H, Ito R, Miyazawa M, Yamagata Y, Sekiguchi M (2005) Mammalian enzymes for preventing transcriptional errors caused by oxidative damage. Nucleic Acids Res 33:3779–3784. doi:10.1093/nar/gki682 PubMedGoogle Scholar
  53. 53.
    Ito R, Hayakawa H, Sekiguchi M, Ishibashi T (2005) Multiple enzyme activities of Escherichia coli MutT protein for sanitization of DNA and RNA precursor pools. Biochemistry (Mosc) 44:6670–6674. doi:10.1021/bi047550k Google Scholar
  54. 54.
    Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1, 2, 3, 6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177. doi:10.1073/pnas.82.7.2173 PubMedGoogle Scholar
  55. 55.
    Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36. doi:10.1002/ana.10483 PubMedGoogle Scholar
  56. 56.
    Joenje H (1989) Genetic toxicology of oxygen. Mutat Res 219:193–208PubMedGoogle Scholar
  57. 57.
    Kajitani K, Yamaguchi H, Dan Y, Furuichi M, Kang D, Nakabeppu Y (2006) MTH1, an oxidized purine nucleoside triphosphatase, suppresses the accumulation of oxidative damage of nucleic acids in the hippocampal microglia during kainate-induced excitotoxicity. J Neurosci 26:1688–1698. doi:10.1523/JNEUROSCI.4948-05.2006 PubMedGoogle Scholar
  58. 58.
    Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H (1986) Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851. doi:10.1093/carcin/7.11.1849 PubMedGoogle Scholar
  59. 59.
    Kedersha N, Stoecklin G, Ayodele M et al (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884. doi:10.1083/jcb.200502088 PubMedGoogle Scholar
  60. 60.
    Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156PubMedGoogle Scholar
  61. 61.
    Kikuchi A, Takeda A, Onodera H et al (2002) Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 9:244–248. doi:10.1006/nbdi.2002.0466 PubMedGoogle Scholar
  62. 62.
    King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT (2006) Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 26:4672–4680. doi:10.1523/JNEUROSCI.5539-05.2006 PubMedGoogle Scholar
  63. 63.
    Krokan HE, Kavli B, Slupphaug G (2004) Novel aspects of macromolecular repair and relationship to human disease. J Mol Med 82:280–297. doi:10.1007/s00109-004-0528-1 PubMedGoogle Scholar
  64. 64.
    Lee JW, Beebe K, Nangle LA et al (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443:50–55. doi:10.1038/nature05096 PubMedGoogle Scholar
  65. 65.
    Li Z, Wu J, Deleo CJ (2006) RNA damage and surveillance under oxidative stress. IUBMB Life 58:581–588. doi:10.1080/15216540600946456 PubMedGoogle Scholar
  66. 66.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. doi:10.1038/nature05292 PubMedGoogle Scholar
  67. 67.
    Liu J, Head E, Gharib AM et al (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci USA 99:2356–2361. doi:10.1073/pnas.261709299 PubMedGoogle Scholar
  68. 68.
    Liu Q, Xie F, Rolston R et al (2007) Prevention and treatment of Alzheimer disease and aging: antioxidants. Mini Rev Med Chem 7:171–180. doi:10.2174/138955707779802552 PubMedGoogle Scholar
  69. 69.
    Lovell MA, Markesbery WR (2008) Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 29:169–175. doi:10.1016/j.nbd.2007.07.030 PubMedGoogle Scholar
  70. 70.
    Martinet W, de Meyer GR, Herman AG, Kockx MM (2004) Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest 34:323–327. doi:10.1111/j.1365-2362.2004.01343.x PubMedGoogle Scholar
  71. 71.
    Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82:637–672PubMedGoogle Scholar
  72. 72.
    Mehler MF, Mattick JS (2006) Non-coding RNAs in the nervous system. J Physiol 575:333–341. doi:10.1113/jphysiol.2006.113191 PubMedGoogle Scholar
  73. 73.
    Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823. doi:10.1152/physrev.00036.2006 PubMedGoogle Scholar
  74. 74.
    Migliore L, Fontana I, Trippi F et al (2005) Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 26:567–573. doi:10.1016/j.neurobiolaging.2004.07.016 PubMedGoogle Scholar
  75. 75.
    Moreira PI, Honda K, Zhu X et al (2006) Brain and brawn: parallels in oxidative strength. Neurology 66(Suppl 1):S97–S101. doi:10.1212/01.wnl.0000192307.15103.83 PubMedGoogle Scholar
  76. 76.
    Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44:1493–1505. doi:10.1016/j.freeradbiomed.2008.01.002 PubMedGoogle Scholar
  77. 77.
    Moreira PI, Zhu X, Nunomura A, Smith MA, Perry G (2006) Therapeutic options in Alzheimer’s disease. Expert Rev Neurother 6:897–910. doi:10.1586/14737175.6.6.897 PubMedGoogle Scholar
  78. 78.
    Mundt JM, Hah SS, Sumbad RA, Schramm V, Henderson PT (2008) Incorporation of extracellular 8-oxodG into DNA and RNA requires purine nucleoside phosphorylase in MCF-7 cells. Nucleic Acids Res 36:228–236. doi:10.1093/nar/gkm1032 PubMedGoogle Scholar
  79. 79.
    Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 5:761–772. doi:10.1016/j.dnarep.2006.03.003 Google Scholar
  80. 80.
    Nakabeppu Y, Tsuchimoto D, Ichinoe A et al (2004) Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Ann N Y Acad Sci 1011:101–111. doi:10.1196/annals.1293.011 PubMedGoogle Scholar
  81. 81.
    Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138. doi:10.1111/j.1750-3639.2007.00120.x PubMedGoogle Scholar
  82. 82.
    Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641. doi:10.1097/ PubMedGoogle Scholar
  83. 83.
    Nunomura A, Chiba S, Kosaka K et al (2002) Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. Neuroreport 13:2035–2039. doi:10.1097/00001756-200211150-00009 PubMedGoogle Scholar
  84. 84.
    Nunomura A, Chiba S, Lippa CF et al (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17:108–113. doi:10.1016/j.nbd.2004.06.003 PubMedGoogle Scholar
  85. 85.
    Nunomura A, Moreira PI, Lee HG et al (2007) Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol Disord Drug Targets 6:411–423. doi:10.2174/187152707783399201 PubMedGoogle Scholar
  86. 86.
    Nunomura A, Perry G, Aliev G et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767PubMedGoogle Scholar
  87. 87.
    Nunomura A, Perry G, Pappolla MA et al (2000) Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017PubMedGoogle Scholar
  88. 88.
    Nunomura A, Perry G, Pappolla MA et al (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964PubMedGoogle Scholar
  89. 89.
    Park EM, Shigenaga MK, Degan P et al (1992) Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci USA 89:3375–3379. doi:10.1073/pnas.89.8.3375 PubMedGoogle Scholar
  90. 90.
    Perkins DO, Jeffries C, Sullivan P (2005) Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10:69–78. doi:10.1038/ PubMedGoogle Scholar
  91. 91.
    Perry G, Nunomura A, Cash AD et al (2002) Reactive oxygen: its sources and significance in Alzheimer disease. J Neural Transm Suppl 62:69–75Google Scholar
  92. 92.
    Perry G, Nunomura A, Hirai K et al (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 33:1475–1479. doi:10.1016/S0891-5849(02)01113-9 PubMedGoogle Scholar
  93. 93.
    Petersen RB, Siedlak SL, Lee HG et al (2005) Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathol 110:232–238. doi:10.1007/s00401-005-1034-4 PubMedGoogle Scholar
  94. 94.
    Praticò D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972–976. doi:10.1001/archneur.59.6.972 PubMedGoogle Scholar
  95. 95.
    Rahkonen T, Eloniemi-Sulkava U, Rissanen S, Vatanen A, Viramo P, Sulkava R (2003) Dementia with Lewy bodies according to the consensus criteria in a general population aged 75 years or older. J Neurol Neurosurg Psychiatry 74:720–724. doi:10.1136/jnnp.74.6.720 PubMedGoogle Scholar
  96. 96.
    Rhee Y, Valentine MR, Termini J (1995) Oxidative base damage in RNA detected by reverse transcriptase. Nucleic Acids Res 23:3275–3282. doi:10.1093/nar/23.16.3275 PubMedGoogle Scholar
  97. 97.
    Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24:915–919. doi:10.1016/S0197-4580(03)00031-9 PubMedGoogle Scholar
  98. 98.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. doi:10.1038/362059a0 PubMedGoogle Scholar
  99. 99.
    Row BW, Liu R, Xu W, Kheirandish L, Gozal D (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 167:1548–1553. doi:10.1164/rccm.200209-1050OC PubMedGoogle Scholar
  100. 100.
    Satterlee JS, Barbee S, Jin P et al (2007) Noncoding RNAs in the brain. J Neurosci 27:11856–11859. doi:10.1523/JNEUROSCI.3624-07.2007 PubMedGoogle Scholar
  101. 101.
    Sayre LM, Perry G, Smith MA (1999) In situ methods for detection and localization of markers of oxidative stress: application in neurodegenerative disorders. Methods Enzymol 309:133–152. doi:10.1016/S0076-6879(99)09012-6 PubMedGoogle Scholar
  102. 102.
    Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738PubMedGoogle Scholar
  103. 103.
    Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097PubMedCrossRefGoogle Scholar
  104. 104.
    Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827. doi:10.1111/j.1471-4159.1990.tb02325.x PubMedGoogle Scholar
  105. 105.
    Schneider JE Jr, Phillips JR, Pye Q, Maidt ML, Price S, Floyd RA (1993) Methylene blue and rose bengal photoinactivation of RNA bacteriophages: comparative studies of 8-oxoguanine formation in isolated RNA. Arch Biochem Biophys 301:91–97. doi:10.1006/abbi.1993.1119 PubMedGoogle Scholar
  106. 106.
    Schubert J, Wilmer JW (1991) Does hydrogen peroxide exist “free” in biological systems? Free Radic Biol Med 11:545–555. doi:10.1016/0891-5849(91)90135-P PubMedGoogle Scholar
  107. 107.
    Shan X, Chang Y, Lin CL (2007) Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J 21:2753–2764. doi:10.1096/fj.07-8200com PubMedGoogle Scholar
  108. 108.
    Shan X, Lin CL (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662. doi:10.1016/j.neurobiolaging.2005.03.022 PubMedGoogle Scholar
  109. 109.
    Shan X, Tashiro H, Lin CL (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921PubMedGoogle Scholar
  110. 110.
    Shao C, Xiong S, Li GM et al (2008) Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radic Biol Med 45:813–819. doi:10.1016/j.freeradbiomed.2008.06.003 PubMedGoogle Scholar
  111. 111.
    Shen Z, Wu W, Hazen SL (2000) Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry (Mosc) 39:5474–5482. doi:10.1021/bi992809y Google Scholar
  112. 112.
    Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808. doi:10.1126/science.1082320 PubMedGoogle Scholar
  113. 113.
    Shimura-Miura H, Hattori N, Kang D, Miyako K, Nakabeppu Y, Mizuno Y (1999) Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson’s disease. Ann Neurol 46:920–924. doi:10.1002/1531-8249(199912)46:6<920::AID-ANA17>3.0.CO;2-R PubMedGoogle Scholar
  114. 114.
    Smith MA, Nunomura A, Zhu X, Takeda A, Perry G (2000) Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease. Antioxid Redox Signal 2:413–420. doi:10.1089/15230860050192198 PubMedGoogle Scholar
  115. 115.
    Smith MA, Perry G, Richey PL et al (1996) Oxidative damage in Alzheimer’s. Nature 382:120–121. doi:10.1038/382120b0 PubMedGoogle Scholar
  116. 116.
    Sofic E, Riederer P, Heinsen H et al (1988) Increased iron (III) and total iron content in postmortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205. doi:10.1007/BF01244786 PubMedGoogle Scholar
  117. 117.
    Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2005) A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta 1756:65–75PubMedGoogle Scholar
  118. 118.
    Taddei F, Hayakawa H, Bouton M et al (1997) Counteraction by MutT protein of transcriptional errors caused by oxidative damage. Science 278:128–130. doi:10.1126/science.278.5335.128 PubMedGoogle Scholar
  119. 119.
    Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29:288–299. doi:10.1002/bies.20544 PubMedGoogle Scholar
  120. 120.
    Takahashi MA, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226:558–566. doi:10.1016/0003-9861(83)90325-9 PubMedGoogle Scholar
  121. 121.
    Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104:66–71. doi:10.1073/pnas.0609737104 PubMedGoogle Scholar
  122. 122.
    Tateyama M, Takeda A, Onodera Y et al (2003) Oxidative stress and predominant Aβ42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol 105:581–585PubMedGoogle Scholar
  123. 123.
    Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995. doi:10.1126/science.1067122 PubMedGoogle Scholar
  124. 124.
    van Leeuwen FW, de Kleijn DP, van den Hurk HH et al (1998) Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 279:242–247. doi:10.1126/science.279.5348.242 PubMedGoogle Scholar
  125. 125.
    Wamer WG, Wei RR (1997) In vitro photooxidation of nucleic acids by ultraviolet A radiation. Photochem Photobiol 65:560–563. doi:10.1111/j.1751-1097.1997.tb08605.x PubMedGoogle Scholar
  126. 126.
    Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96:825–832. doi:10.1111/j.1471-4159.2005.03615.x PubMedGoogle Scholar
  127. 127.
    Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3–16. doi:10.1385/MN:31:1-3:003 PubMedGoogle Scholar
  128. 128.
    Weimann A, Belling D, Poulsen HE (2002) Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res 30:e7. doi:10.1093/nar/30.2.e7
  129. 129.
    Weissman L, Jo DG, Sørensen MM et al (2007) Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 35:5545–5555. doi:10.1093/nar/gkm605 PubMedGoogle Scholar
  130. 130.
    Wu J, Li Z (2008) Human polynucleotide phosphorylase reduces oxidative RNA damage and protects HeLa cell against oxidative stress. Biochem Biophys Res Commun 372:288–292. doi:10.1016/j.bbrc.2008.05.058 PubMedGoogle Scholar
  131. 131.
    Yamaguchi H, Kajitani K, Dan Y et al (2006) MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Cell Death Differ 13:551–563. doi:10.1038/sj.cdd.4401788 PubMedGoogle Scholar
  132. 132.
    Yanagawa H, Ogawa Y, Ueno M (1992) Redox ribonucleosides. Isolation and characterization of 5-hydroxyuridine, 8-hydroxyguanosine, and 8-hydroxyadenosine from Torula yeast RNA. J Biol Chem 267:13320–13326PubMedGoogle Scholar
  133. 133.
    Yang WH, Bloch DB (2007) Probing the mRNA processing body using protein macroarrays and “autoantigenomics”. RNA 13:704–712. doi:10.1261/rna.411907 PubMedGoogle Scholar
  134. 134.
    Yin B, Whyatt RM, Perera FP, Randall MC, Cooper TB, Santella RM (1995) Determination of 8-hydroxydeoxyguanosine by an immunoaffinity chromatography-monoclonal antibody-based ELISA. Free Radic Biol Med 18:1023–1032. doi:10.1016/0891-5849(95)00003-G PubMedGoogle Scholar
  135. 135.
    Zhang J, Perry G, Smith MA et al (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423–1429PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Akihiko Nunomura
    • 1
  • Tim Hofer
    • 2
  • Paula I. Moreira
    • 3
  • Rudy J. Castellani
    • 4
  • Mark A. Smith
    • 5
  • George Perry
    • 5
    • 6
  1. 1.Department of Neuropsychiatry, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiYamanashiJapan
  2. 2.Division of Clinical Research, Department of Aging and Geriatrics, and Genomics and Biomarkers Core of the Institute on AgingUniversity of FloridaGainesvilleUSA
  3. 3.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  4. 4.Department of PathologyUniversity of MarylandBaltimoreUSA
  5. 5.Department of PathologyCase Western Reserve UniversityClevelandUSA
  6. 6.College of SciencesUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations