Acta Neuropathologica

, Volume 117, Issue 4, pp 445–456 | Cite as

Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation

  • David Capper
  • Timo Gaiser
  • Christian Hartmann
  • Antje Habel
  • Wolf Mueller
  • Christel Herold-Mende
  • Andreas von Deimling
  • Markus David SiegelinEmail author
Original Paper


Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising cancer drug. However, many tumours are resistant to TRAIL-based therapies. Glioma cells with stem cell features (SCG), such as CD133 expression and neurosphere formation, have been recently identified to be more resistant to cytotoxic drugs than glioma cells lacking stem-cell-like features (NSCGs). Here we report that SCGs are completely resistant to 100–2,000 ng/ml TRAIL, whereas NSCGs revealed a moderate sensitivity to TRAIL. We found that SCGs exhibited only low levels of caspase-8 mRNA and protein, known to be indispensable for TRAIL-induced apoptosis. In addition, we detected hypermethylation of CASP8 promoter in SCGs, whereas NSCGs exhibited a non-methylated CASP8 promoter. Reexpression of caspase-8 by 5-Aza-2′-deoxycytidine was not sufficient to restore TRAIL sensitivity in SCGs cells, suggesting that additional factors cause TRAIL resistance in SCGs. Our data suggest that therapy with TRAIL, either as monotherapy or in combination with demethylating agents, is not effective in treating glioblastoma because SCGs are not targeted by such treatment.


Stem-cell-like glioma cells Caspase-8 TRAIL Apoptosis CD133 



Inhibitor of apoptosis protein


Tumour necrosis factor (TNF)-related apoptosis-inducing ligand


Stem-cell-like glioma cells


Non-stem-cell-like glioma cells



We thank Volker Ehemann for performing flow cytometry. This work was supported by a grant from the PostDoc programme to Markus Siegelin of the University of Heidelberg.


  1. 1.
    Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118:1979–1990PubMedCrossRefGoogle Scholar
  2. 2.
    Ashley DM, Riffkin CD, Muscat AM, Knight MJ, Kaye AH, Novak U et al (2005) Caspase 8 is absent or low in many ex vivo gliomas. Cancer 104:1487–1496PubMedCrossRefGoogle Scholar
  3. 3.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  4. 4.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815PubMedCrossRefGoogle Scholar
  5. 5.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  6. 6.
    Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16:33–45PubMedCrossRefGoogle Scholar
  7. 7.
    Eramo A, Pallini R, Lotti F, Sette G, Patti M, Bartucci M et al (2005) Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction. Cancer Res 65:11469–11477PubMedCrossRefGoogle Scholar
  8. 8.
    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797PubMedGoogle Scholar
  9. 9.
    Fulda S, Debatin KM (2002) IFNgamma sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 21:2295–2308PubMedCrossRefGoogle Scholar
  10. 10.
    Fulda S, Debatin KM (2006) 5-Aza-2′-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25:5125–5133PubMedCrossRefGoogle Scholar
  11. 11.
    Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815PubMedGoogle Scholar
  12. 12.
    Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW et al (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in human malignant glioma cells. Cancer Res 61:1162–1170PubMedGoogle Scholar
  13. 13.
    Hartmann C, Mueller W, Lass U, Kamel-Reid S, von Deimling A (2005) Molecular genetic analysis of oligodendroglial tumors. J Neuropathol Exp Neurol 64:10–14PubMedGoogle Scholar
  14. 14.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826PubMedCrossRefGoogle Scholar
  15. 15.
    Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N (2000) Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 60:4315–4319PubMedGoogle Scholar
  16. 16.
    Hopkins-Donaldson S, Bodmer JL, Bourloud KB, Brognara CB, Tschopp J, Gross N (2000) Loss of caspase-8 expression in neuroblastoma is related to malignancy and resistance to TRAIL-induced apoptosis. Med Pediatr Oncol 35:608–611PubMedCrossRefGoogle Scholar
  17. 17.
    Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195PubMedCrossRefGoogle Scholar
  18. 18.
    Jones PA (2002) DNA methylation and cancer. Oncogene 21:5358–5360PubMedCrossRefGoogle Scholar
  19. 19.
    Kim EH, Kim HS, Kim SU, Noh EJ, Lee JS, Choi KS (2005) Sodium butyrate sensitizes human glioma cells to TRAIL-mediated apoptosis through inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP. Oncogene 24:6877–6889PubMedCrossRefGoogle Scholar
  20. 20.
    Kim EH, Kim SU, Shin DY, Choi KS (2004) Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP. Oncogene 23:446–456PubMedCrossRefGoogle Scholar
  21. 21.
    Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM et al (2007) Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13:3403–3412PubMedCrossRefGoogle Scholar
  22. 22.
    Kyritsis AP, Tachmazoglou F, Rao JS, Puduvalli VK (2007) Bortezomib sensitizes human astrocytoma cells to tumor necrosis factor related apoptosis-inducing ligand induced apoptosis. Clin Cancer Res 13:6540–6541PubMedCrossRefGoogle Scholar
  23. 23.
    LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–75PubMedCrossRefGoogle Scholar
  24. 24.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedCrossRefGoogle Scholar
  25. 25.
    Liu X, Yue P, Chen S, Hu L, Lonial S, Khuri FR et al (2007) The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res 67:4981–4988PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G et al (2007) CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28:1264–1268PubMedCrossRefGoogle Scholar
  27. 27.
    Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85:817–827PubMedCrossRefGoogle Scholar
  28. 28.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  29. 29.
    Qiu Y, Liu X, Zou W, Yue P, Lonial S, Khuri FR et al (2007) The farnesyltransferase inhibitor R115777 up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer cells. Cancer Res 67:4973–4980PubMedCrossRefGoogle Scholar
  30. 30.
    Ricci-Vitiani L, Pedini F, Mollinari C, Condorelli G, Bonci D, Bez A et al (2004) Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. J Exp Med 200:1257–1266PubMedCrossRefGoogle Scholar
  31. 31.
    Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272:26953–26958PubMedCrossRefGoogle Scholar
  32. 32.
    Singh SK, Clarke ID, Hide T, Dirks PB (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273PubMedCrossRefGoogle Scholar
  33. 33.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  34. 34.
    Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO et al (2006) Changing paradigms—an update on the multidisciplinary management of malignant glioma. Oncologist 11:165–180PubMedCrossRefGoogle Scholar
  35. 35.
    Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Bock BC et al (2008) Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27:6646–6656PubMedCrossRefGoogle Scholar
  36. 36.
    Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535PubMedCrossRefGoogle Scholar
  37. 37.
    Vogler M, Durr K, Jovanovic M, Debatin KM, Fulda S (2007) Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene 26:248–257PubMedCrossRefGoogle Scholar
  38. 38.
    Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M et al (2008) Targeting XIAP bypasses Bcl-2-mediated resistance to TRAIL and cooperates with TRAIL to suppress pancreatic cancer growth in vitro and in vivo. Cancer Res 68:7956–7965PubMedCrossRefGoogle Scholar
  39. 39.
    Xiao C, Yang BF, Asadi N, Beguinot F, Hao C (2002) Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem 277:25020–25025PubMedCrossRefGoogle Scholar
  40. 40.
    Zobalova R, McDermott L, Stantic M, Prokopova K, Dong LF, Neuzil J (2008) CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP. Biochem Biophys Res Commun 373:567–571PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • David Capper
    • 1
  • Timo Gaiser
    • 1
  • Christian Hartmann
    • 1
    • 3
  • Antje Habel
    • 1
  • Wolf Mueller
    • 1
  • Christel Herold-Mende
    • 2
  • Andreas von Deimling
    • 1
    • 3
  • Markus David Siegelin
    • 1
    Email author
  1. 1.Department of NeuropathologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Department of NeurosurgeryUniversity Hospital HeidelbergHeidelbergGermany
  3. 3.Clinical Cooperation Unit NeuropathologyGerman Cancer Center (DKFZ) G380HeidelbergGermany

Personalised recommendations