Acta Neuropathologica

, Volume 117, Issue 2, pp 137–149 | Cite as

Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies

  • Manuela Neumann
  • Linda K. Kwong
  • Edward B. Lee
  • Elisabeth Kremmer
  • Andrew Flatley
  • Yan Xu
  • Mark S. Forman
  • Dirk Troost
  • Hans A. Kretzschmar
  • John Q. Trojanowski
  • Virginia M.-Y. Lee
Original Paper

Abstract

Accumulation of hyperphosphorylated, ubiquitinated and N-terminally truncated TAR DNA-binding protein (TDP-43) is the pathological hallmark lesion in most familial and sporadic forms of FTLD-U and ALS, which can be subsumed as TDP-43 proteinopathies. In order to get more insight into the role of abnormal phosphorylation in the disease process, the identification of specific phosphorylation sites and the generation of phosphorylation-specific antibodies are mandatory. Here, we developed and characterized novel rat monoclonal antibodies (1D3 and 7A9) raised against phosphorylated S409/410 of TDP-43. These antibodies were used to study the presence of S409/410 phosphorylation by immunohistochemistry and biochemical analysis in a large series of 64 FTLD-U cases with or without motor neuron disease including familial cases with mutations in progranulin (n = 5), valosin-containing protein (n = 4) and linkage to chromosome 9p (n = 4), 18 ALS cases as well as other neurodegenerative diseases with concomitant TDP-43 pathology (n = 5). Our data demonstrate that phosphorylation of S409/410 of TDP-43 is a highly consistent feature in pathologic inclusions in the whole spectrum of sporadic and familial forms of TDP-43 proteinopathies. Physiological nuclear TDP-43 was not detectable with these mAbs by immunohistochemistry and by immunoblot analyses. While the accumulation of phosphorylated C-terminal fragments was a robust finding in the cortical brain regions of FTLD-U and ALS, usually being much more abundant than the phosphorylated full-length TDP-43 band, spinal cord samples revealed a predominance of full-length TDP-43 over C-terminal fragments. This argues for a distinct TDP-43 species composition in inclusions in cortical versus spinal cord cells. Overall, these mAbs are powerful tools for the highly specific detection of disease-associated abnormal TDP-43 species and will be extremely useful for the neuropathological routine diagnostics of TDP-43 proteinopathies and for the investigation of emerging cellular and animal models for TDP-43 proteinopathies.

Notes

Acknowledgments

Work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 596) and the Federal Ministry of Education and Research (01GI0704) as well as from the NIH (AG10124 and AG17586). MN is funded by the Stavros-Niarchos Foundation and the Synapsis Foundation. We thank Iryna Pigur and Mareike Schroff for excellent technical assistance.

Supplementary material

401_2008_477_MOESM1_ESM.fdf (69 kb)
Additional phosphopeptides used for immunization (FDF 69 kb)

References

  1. 1.
    Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. doi: 10.1002/ana.21154 PubMedCrossRefGoogle Scholar
  2. 2.
    Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611. doi: 10.1016/j.bbrc.2006.10.093 PubMedCrossRefGoogle Scholar
  3. 3.
    Baker M, Mackenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919. doi: 10.1038/nature05016 PubMedCrossRefGoogle Scholar
  4. 4.
    Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878. doi: 10.2741/2727 PubMedCrossRefGoogle Scholar
  5. 5.
    Buratti E, Dork T, Zuccato E, Pagani F, Romano M, Baralle FE (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20:1774–1784. doi: 10.1093/emboj/20.7.1774 PubMedCrossRefGoogle Scholar
  6. 6.
    Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22. doi: 10.1007/s00401-007-0237-2 PubMedCrossRefGoogle Scholar
  7. 7.
    Cairns NJ, Neumann M, Bigio EH et al (2007) TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 171:227–240. doi: 10.2353/ajpath.2007.070182 PubMedCrossRefGoogle Scholar
  8. 8.
    Cruts M, Gijselinck I, van der Zee J et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924. doi: 10.1038/nature05017 PubMedCrossRefGoogle Scholar
  9. 9.
    Davidson Y, Kelley T, Mackenzie IR et al (2007) Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol 113:521–533. doi: 10.1007/s00401-006-0189-y PubMedCrossRefGoogle Scholar
  10. 10.
    Dickson DW, Josephs KA, Amador-Ortiz C (2007) TDP-43 in differential diagnosis of motor neuron disorders. Acta Neuropathol 114:71–79. doi: 10.1007/s00401-007-0234-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Fujiwara H, Hasegawa M, Dohmae N et al (2002) Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164. doi: 10.1038/ncb841 PubMedCrossRefGoogle Scholar
  12. 12.
    Geser F, Winton MJ, Kwong LK et al (2008) Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 115:133–145. doi: 10.1007/s00401-007-0257-y PubMedCrossRefGoogle Scholar
  13. 13.
    Gitcho MA, Baloh RH, Chakraverty S et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538. doi: 10.1002/ana.21344 PubMedCrossRefGoogle Scholar
  14. 14.
    Hasegawa M, Arai T, Akiyama H et al (2007) TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130:1386–1394. doi: 10.1093/brain/awm065 PubMedCrossRefGoogle Scholar
  15. 15.
    Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70. doi: 10.1002/ana.21425 PubMedCrossRefGoogle Scholar
  16. 16.
    Igaz LM, Kwong LK, Xu Y et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173:182–194. doi: 10.2353/ajpath.2008.080003 PubMedCrossRefGoogle Scholar
  17. 17.
    Inukai Y, Nonaka T, Arai T et al (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582:2899–2904. doi: 10.1016/j.febslet.2008.07.027 PubMedCrossRefGoogle Scholar
  18. 18.
    Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574. doi: 10.1038/ng.132 PubMedCrossRefGoogle Scholar
  19. 19.
    Kuhnlein P, Sperfeld AD, Vanmassenhove B et al (2008) Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol 65:1185–1189. doi: 10.1001/archneur.65.9.1185 PubMedCrossRefGoogle Scholar
  20. 20.
    Kwong LK, Neumann M, Sampathu DM, Lee VM, Trojanowski JQ (2007) TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol 114:63–70. doi: 10.1007/s00401-007-0226-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. doi: 10.1146/annurev.neuro.24.1.1121 PubMedCrossRefGoogle Scholar
  22. 22.
    Mackenzie IR, Baborie A, Pickering-Brown S et al (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 112:539–549. doi: 10.1007/s00401-006-0138-9 PubMedCrossRefGoogle Scholar
  23. 23.
    Mackenzie IR, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. doi: 10.1002/ana.21147 PubMedCrossRefGoogle Scholar
  24. 24.
    Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844. doi: 10.1212/01.wnl.0000200048.53766.b4 PubMedCrossRefGoogle Scholar
  25. 25.
    Nakashima-Yasuda H, Uryu K, Robinson J et al (2007) Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229. doi: 10.1007/s00401-007-0261-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM (2007) TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64:1388–1394. doi: 10.1001/archneur.64.10.1388 PubMedCrossRefGoogle Scholar
  27. 27.
    Neumann M, Kwong LK, Truax AC et al (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66:177–183. doi: 10.1097/01.jnen.0000248554.45456.58 PubMedCrossRefGoogle Scholar
  28. 28.
    Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi: 10.1126/science.1134108 PubMedCrossRefGoogle Scholar
  29. 29.
    Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648. doi: 10.1016/j.cell.2006.09.026 PubMedCrossRefGoogle Scholar
  30. 30.
    Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69:3584–3596PubMedGoogle Scholar
  31. 31.
    Roeber S, Mackenzie IR, Kretzschmar HA, Neumann M (2008) TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol 116:147–157. doi: 10.1007/s00401-008-0395-x PubMedCrossRefGoogle Scholar
  32. 32.
    Rutherford NJ, Zhang YJ, Baker M et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193. doi: 10.1371/journal.pgen.1000193 PubMedCrossRefGoogle Scholar
  33. 33.
    Sampathu DM, Neumann M, Kwong LK et al (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 169:1343–1352. doi: 10.2353/ajpath.2006.060438 PubMedCrossRefGoogle Scholar
  34. 34.
    Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672. doi: 10.1126/science.1154584 PubMedCrossRefGoogle Scholar
  35. 35.
    Uryu K, Nakashima-Yasuda H, Forman MS et al (2008) Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67:555–564. doi: 10.1097/NEN.0b013e31817713b5 PubMedCrossRefGoogle Scholar
  36. 36.
    Van Deerlin VM, Leverenz JB, Bekris LM et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7:409–416. doi: 10.1016/S1474-4422(08)70071-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129:868–876. doi: 10.1093/brain/awl030 PubMedCrossRefGoogle Scholar
  38. 38.
    Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381. doi: 10.1038/ng1332 PubMedCrossRefGoogle Scholar
  39. 39.
    Yokoseki A, Shiga A, Tan CF et al (2008) TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann Neurol 63:538–542. doi: 10.1002/ana.21392 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Manuela Neumann
    • 1
    • 2
  • Linda K. Kwong
    • 3
  • Edward B. Lee
    • 3
  • Elisabeth Kremmer
    • 4
  • Andrew Flatley
    • 4
  • Yan Xu
    • 3
  • Mark S. Forman
    • 5
  • Dirk Troost
    • 6
  • Hans A. Kretzschmar
    • 2
  • John Q. Trojanowski
    • 3
  • Virginia M.-Y. Lee
    • 3
  1. 1.Institute of NeuropathologyUniversity Hospital of ZürichZurichSwitzerland
  2. 2.Center for Neuropathology and Prion ResearchLudwig-Maximilians UniversityMunichGermany
  3. 3.Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on AgingUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  4. 4.Helmholtz Center Munich, German Research Center for Environmental Health (GmbH)Institute of Molecular ImmunologyMunichGermany
  5. 5.Department of Experimental MedicineMerck Research LaboratoriesNorth WalesUSA
  6. 6.Department of Neuropathology, Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations