Advertisement

Acta Neuropathologica

, Volume 116, Issue 6, pp 597–602 | Cite as

Analysis of the IDH1 codon 132 mutation in brain tumors

  • Jörg Balss
  • Jochen Meyer
  • Wolf Mueller
  • Andrey Korshunov
  • Christian Hartmann
  • Andreas von DeimlingEmail author
Original Paper

Abstract

A recent study reported on mutations in the active site of the isocitrate dehydrogenase (IDH1) gene in 12% of glioblastomas. All mutations detected resulted in an amino acid exchange in position 132. We analyzed the genomic region spanning wild type R132 of IDH1 by direct sequencing in 685 brain tumors including 41 pilocytic astrocytomas, 12 subependymal giant cell astrocytomas, 7 pleomorphic xanthoastrocytomas, 93 diffuse astrocytomas, 120 adult glioblastomas, 14 pediatric glioblastomas, 105 oligodendrogliomas, 83 oligoastrocytomas, 31 ependymomas, 58 medulloblastomas, 9 supratentorial primitive neuroectodermal tumors, 17 schwannomas, 72 meningiomas and 23 pituitary adenomas. A total of 221 somatic IDH1 mutations were detected and the highest frequencies occurred in diffuse astrocytomas (68%), oligodendrogliomas (69%), oligoastrocytomas (78%) and secondary glioblastomas (88%). Primary glioblastomas and other entities were characterized by a low frequency or absence of mutations in amino acid position 132 of IDH1. The very high frequency of IDH1 mutations in WHO grade II astrocytic and oligodendroglial gliomas suggests a role in early tumor development.

Keywords

IDH1 Glioma Progression Astrocytoma Oligodendroglioma Medulloblastoma 

Notes

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF). We wish to thank K. Lindenberg, U. Ernst and F. Mössler for skillful assistance.

References

  1. 1.
    Geisbrecht BV, Gould SJ (1999) The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 274:30527–30533PubMedCrossRefGoogle Scholar
  2. 2.
    Ichimura K, Bolin MB, Goike HM et al (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424PubMedGoogle Scholar
  3. 3.
    Jennings GT, Minard KI, McAlister-Henn L (1997) Expression and mutagenesis of mammalian cytosolic NADP+-specific isocitrate dehydrogenase. Biochemistry 36:13743–13747PubMedCrossRefGoogle Scholar
  4. 4.
    Kim SY, Lee SM, Tak JK et al (2007) Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase. Mol Cell Biochem 302:27–34PubMedCrossRefGoogle Scholar
  5. 5.
    Lee SM, Koh HJ, Park DC et al (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196PubMedCrossRefGoogle Scholar
  6. 6.
    Meyer-Puttlitz B, Hayashi Y, Waha A et al (1997) Molecular genetic analysis of giant cell glioblastomas. Am J Pathol 151:853–857PubMedGoogle Scholar
  7. 7.
    Moreno CS, Evans CO, Zhan X et al (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65:10214–10222PubMedCrossRefGoogle Scholar
  8. 8.
    Mueller W, Hartmann C, Hoffmann A et al (2002) Genetic signature of oligoastrocytomas correlates with tumor location and denotes distinct molecular subsets. Am J Pathol 161:313–319PubMedGoogle Scholar
  9. 9.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCrossRefGoogle Scholar
  10. 10.
    Peraud A, Watanabe K, Plate KH et al (1997) p53 mutations versus EGF receptor expression in giant cell glioblastomas. J Neuropath Exp Neurol 56:1236–1241PubMedCrossRefGoogle Scholar
  11. 11.
    Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396PubMedCrossRefGoogle Scholar
  12. 12.
    Scherer HJ (1940) Cerebral astrocytomas and their derivatives. Am J Cancer 40:159–198Google Scholar
  13. 13.
    Schmidt M, Antweiler S, Urban N et al (2002) Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol 61:321–328PubMedGoogle Scholar
  14. 14.
    Soundar S, Danek BL, Colman RF (2000) Identification by mutagenesis of arginines in the substrate binding site of the porcine NADP-dependent isocitrate dehydrogenase. J Biol Chem 275:5606–5612PubMedCrossRefGoogle Scholar
  15. 15.
    von Deimling A, Fimmers R, Schmidt MC et al (2000) Comprehensive allelotype and genetic analysis of 466 human nervous system tumors. J Neuropathol Exp Neurol 59:544–558Google Scholar
  16. 16.
    von Deimling A, von Ammon K, Schoenfeld D et al (1993) Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3:19–26CrossRefGoogle Scholar
  17. 17.
    Watanabe K, Tachibana O, Sato K et al (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jörg Balss
    • 1
  • Jochen Meyer
    • 1
  • Wolf Mueller
    • 2
  • Andrey Korshunov
    • 2
    • 1
  • Christian Hartmann
    • 2
    • 1
  • Andreas von Deimling
    • 2
    • 1
    Email author
  1. 1.Clinical Cooperation Unit Neuropathology G380German Cancer Research CenterHeidelbergGermany
  2. 2.Department of Neuropathology, Institute of PathologyRuprecht-Karls-Universität HeidelbergHeidelbergGermany

Personalised recommendations