Acta Neuropathologica

, 116:583

Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer’s and Parkinson’s disease brains

Review
  • 347 Downloads

Abstract

Sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause and lacks successful treatment. Here we summarize diagnostic criteria and discuss our current understanding of the steps in the pathogenic cascade. While it is agreed that both degeneration and mononuclear-cell inflammation are components of the s-IBM pathology, how each relates to the pathogenesis remains unsettled. We suggest that the intra-muscle-fiber degenerative component plays the primary role, leading to muscle-fiber destruction and clinical weakness, since anti-inflammatory treatments are not of sustained benefit. We discuss possible treatment strategies aimed toward ameliorating a degenerative component, for example, lithium and resveratrol. Also discussed are the intriguing phenotypic similarities between s-IBM muscle fibers and the brains of Alzheimer and Parkinson’s diseases, the most common neurodegenerative diseases associated with aging. Similarities include, in the respective tissues, cellular aging, mitochondrial abnormalities, oxidative and endoplasmic-reticulum stresses, proteasome inhibition and multiprotein aggregates.

Keywords

Inclusion-body myositis Amyloid-beta Multiprotein aggregates Muscle-fiber degeneration Inflammation Endoplasmic-reticulum stress Alzheimer’s disease Parkinson’s disease Lithium Resveratrol Aging 

References

  1. 1.
    Abou-Sleiman PM, Muqit MMK, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219. doi:10.1038/nrn1868 PubMedGoogle Scholar
  2. 2.
    Askanas V, Alvarez RB, Engel WK (1993) β-Amyloid precursor epitopes in muscle fibers of inclusion body myositis. Ann Neurol 34:551–560. doi:10.1002/ana.410340408 PubMedGoogle Scholar
  3. 3.
    Askanas V, Alvarez RB, Mirabella M, Engel WK (1996) Use of antineurofilament antibody to identify paired-helical filaments in inclusion-body myositis. Ann Neurol 39:389–391. doi:10.1002/ana.410390318 PubMedGoogle Scholar
  4. 4.
    Askanas V, Engel WK, Alvarez RB, McFerrin J, Broccolini A (2000) Novel immunolocalization of α-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. J Neuropathol Exp Neurol 59:592–598PubMedGoogle Scholar
  5. 5.
    Askanas V, Engel WK, Alvarez RB (1992) Light- and electronmicroscopic localization of β-amyloid protein in muscle biopsies of patients with inclusion-body myositis. Am J Pathol 141:31–36PubMedGoogle Scholar
  6. 6.
    Askanas V, Engel WK, Alvarez RB (1993) Enhanced detection of Congo-red positive amyloid deposits in muscle fibers of inclusion-body myositis and brain of Alzheimer’s disease using fluorescence technique. Neurology 43:1265–1267PubMedGoogle Scholar
  7. 7.
    Askanas V, Engel WK, Bilak M, Alvarez RB, Selkoe DJ (1994) Twisted tubulofilaments of inclusion-body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau. Am J Pathol 144:177–187PubMedGoogle Scholar
  8. 8.
    Askanas V, Engel WK, Yang C-C, Lee M-Y, Wisniewski G (1998) Light and electron microscopic immunolocation of Presenilin 1 in abnormal muscle fibers of patients with sporadic inclusion-body myositis and autosomal-recessive inclusion-body myopathy. Am J Pathol 152:889–895PubMedGoogle Scholar
  9. 9.
    Askanas V, Engel WK (1998) Does overexpression of BetaAPP in aging muscle have a pathogenic role and a relevance to Alzheimer’s disease. Am J Pathol 153:1673–1677PubMedGoogle Scholar
  10. 10.
    Askanas V, Engel WK (2001) Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 60:1–14PubMedGoogle Scholar
  11. 11.
    Askanas V, Engel WK (2003) Proposed pathogenetic cascade of inclusion-body myositis: importance of amyloid-β misfolded proteins, predisposing genes, and aging. Curr Opin Rheumatol 15:737–744. doi:10.1097/00002281-200311000-00009 PubMedGoogle Scholar
  12. 12.
    Askanas V, Engel WK (2006) Inclusion-body myositis: a myodegenerative conformational disorder associated with Aβ, protein-misfolding, and proteasome inhibition. Neurology 66:S39–S48. doi:10.1212/01.wnl.0000192128.13875.1e PubMedGoogle Scholar
  13. 13.
    Askanas V, Engel WK (2007) Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 19:550–559. doi:10.1097/BOR.0b013e3282efdc7c PubMedGoogle Scholar
  14. 14.
    Askanas V, McFerrin J, Alvarez RB, Baque S, Engel WK (1997) βAPP gene transfer into cultured human muscle induces inclusion-body myositis aspects. Neuroreport 8:2155–2158. doi:10.1097/00001756-199707070-00012 PubMedGoogle Scholar
  15. 15.
    Askanas V, McFerrin J, Baque S, Alvarez RB, Sarkozi E, Engel WK (1996) Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Proc Natl Acad Sci USA 93:1314–1319. doi:10.1073/pnas.93.3.1314 PubMedGoogle Scholar
  16. 16.
    Askanas V, Serdaroglu P, Engel WK, Alvarez RB (1992) Immunocytochemical localization of ubiquitin in inclusion body myositis allows its light-microscopic distinction from polymyositis. Neurology 42:460–461PubMedGoogle Scholar
  17. 17.
    Baron P, Galimberti D, Meda L, Scarpini E, Conti G, Cogiamanian F et al (2001) Production of IL-6 by human myoblasts stimulated with Abeta: relevance in the pathogenesis of IBM. Neurology 57:1561–1565PubMedGoogle Scholar
  18. 18.
    Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S et al (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322. doi:10.1084/jem.186.8.1315 PubMedGoogle Scholar
  19. 19.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259. doi:10.1126/science.1077209 PubMedGoogle Scholar
  20. 20.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9. doi:10.1038/nm1067 PubMedGoogle Scholar
  21. 21.
    Brunn A, Schröder R, Deckert M (2006) The inflammatory reaction pattern distinguishes primary dysferlinopathies from idiopathic inflammatory myopathies: an important role for the membrane attack complex. Acta Neuropathol 112:325–332. doi:10.1007/s00401-006-0113-5 PubMedGoogle Scholar
  22. 22.
    Chahin N, Engel AG (2008) Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 70:418–424. doi:10.1212/01.wnl.0000277527.69388.fe PubMedGoogle Scholar
  23. 23.
    Chang KA, Kim HS, Ha TY, Ha JW, Shin KY, Jeong YH et al (2006) Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol 26:4327–4338. doi:10.1128/MCB.02393-05 PubMedGoogle Scholar
  24. 24.
    Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S et al (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280:40364–40374. doi:10.1074/jbc.M509329200 PubMedGoogle Scholar
  25. 25.
    Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE et al (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281:10816–10824. doi:10.1074/jbc.M509079200 PubMedGoogle Scholar
  26. 26.
    Choi Y-C, Park GT, Kim T-S, Sunwoo IN, Steinert PM, Kim SY (2000) Sporadic inclusion body myositis correlates with increased expression and cross-linking by transglutaminases 1 and 2. J Biol Chem 275:8703–8710. doi:10.1074/jbc.275.12.8703 PubMedGoogle Scholar
  27. 27.
    Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52. doi:10.1146/annurev.biochem.74.082803.133400 PubMedGoogle Scholar
  28. 28.
    Cucciolla V, Borriello A, Oliva A, Galletti P, Zappia V, Ragione FD (2007) Reservatrol from basic science to the clinic. Cell Cycle 6:2495–2510PubMedGoogle Scholar
  29. 29.
    Dalakas MC (2006) Inflammatory, immune, and viral aspects of inclusion-body myositis. Neurology 66:S33–S38. doi:10.1212/01.wnl.0000192129.65677.87 PubMedGoogle Scholar
  30. 30.
    Dalakas MC (2006) Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies. Nat Clin Pract Neurol 2:437–447. doi:10.1038/ncpneuro0261 PubMedGoogle Scholar
  31. 31.
    Dalakas MC (2008) Interplay between inflammation and degeneration: using inclusion body myositis to study “neruoinflammation”. Ann Neurol 64:1–3. doi:10.1002/ana.21452 PubMedGoogle Scholar
  32. 32.
    Darin N, Kroksmark AK, Ahlander AC, Moslemi AR, Oldfors A, Tulinius M (2007) Inflammation and response to steroid treatment in limb-girdle muscular dystrophy 2. Eur J Paediatr Neurol 11:353–357. doi:10.1016/j.ejpn.2007.02.018 PubMedGoogle Scholar
  33. 33.
    Derham BK, Harding JJ (1999) Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res 18:463–509. doi:10.1016/S1350-9462(98)00030-5 PubMedGoogle Scholar
  34. 34.
    Engel T, Goñi-Oliver P, Gomez de Barreda E, Lucas JJ, Hernandez F, Avila J (2008) Lithium, a potential protective drug in Alzheimer’s disease. Neurodegener Dis 5:247–249. doi:10.1159/000113715 PubMedGoogle Scholar
  35. 35.
    Engel WK, Askanas V (2006) Inclusion-body myositis: clinical, diagnostic, and pathologic aspects. Neurology 66:S20–S29. doi:10.1212/01.wnl.0000192260.33106.bb PubMedGoogle Scholar
  36. 36.
    Engel WK, Cunningham GG (1963) Rapid examination of muscle tissue – an improved trichrome method for fresh-frozen biopsy sections. Neurology 13:919–923PubMedGoogle Scholar
  37. 37.
    Engel WK (1962) The essentiality of histo- and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology 12:778–794Google Scholar
  38. 38.
    Engel WK (1971) “Ragged-red fibers” in ophthalmoplegia syndromes and their differential diagnosis. In: Abstracts of 2nd international congress on muscle diseases, Perth, Australia. Excerpta Med Inter Cong Series, vol 237, p 28Google Scholar
  39. 39.
    Ferreira ST, Vieira MNN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345. doi:10.1080/15216540701283882 PubMedGoogle Scholar
  40. 40.
    Forloni G, Terreni L, Bertani H, Fogliarino S, Ivernizzi R, Assini A et al (2002) Protein misfolding in Alzheimer’s and Parkinson’s disease: genetics and molecular mechanisms. Neurobiol Aging 23:957–976. doi:10.1016/S0197-4580(02)00076-3 PubMedGoogle Scholar
  41. 41.
    Fratta P, Engel WK, McFerrin J, Davies KJA, Lin SW, Askanas V (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167:517–526PubMedGoogle Scholar
  42. 42.
    Fratta P, Engel WK, van Leeuwen FW, Hol EM, Vattemi G, Askanas V (2004) Mutant ubiquitin UBB + 1 is accumulated in sporadic inclusion-body myositis muscle fibers. Neurology 63:1114–1117PubMedGoogle Scholar
  43. 43.
    Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145. doi:10.1385/JMN:17:2:137 PubMedGoogle Scholar
  44. 44.
    Glabe C, Kayed R (2006) Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66:S74–S78. doi:10.1212/01.wnl.0000192103.24796.42 PubMedGoogle Scholar
  45. 45.
    Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921. doi:10.1101/gad.1467506 PubMedGoogle Scholar
  46. 46.
    Hashimoto M, Rockenstain E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 4:21–36. doi:10.1385/NMM:4:1-2:21 PubMedGoogle Scholar
  47. 47.
    Hong WK, Han EH, Kim DG, Ahn JY, Park JS, Han BG (2007) Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem Res 32:1483–1488. doi:10.1007/s11064-007-9336-7 PubMedGoogle Scholar
  48. 48.
    Hoozemans JJM, van Haastert ES, Eikelenboom P, de Vos RAI, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711. doi:10.1016/j.bbrc.2007.01.043 PubMedGoogle Scholar
  49. 49.
    Hussain I, Powell DJ, Howlett DR, Chapman GA, Gilmour L, Murdock PR et al (2000) ASP1 (BACE2) cleaves the amyloid precursor protein at the beta-secretase site. Mol Cell Neurosci 16:609–619. doi:10.1006/mcne.2000.0884 PubMedGoogle Scholar
  50. 50.
    Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275:35661–35664. doi:10.1074/jbc.C000447200 PubMedGoogle Scholar
  51. 51.
    Jaworska-Wilczynska M, Wilczynski GM, Engel WK, Strickland DK, Weisgraber KH, Askanas V (2002) Three lipoprotein receptors and cholesterol in inclusion-body myositis muscle. Neurology 58:438–445PubMedGoogle Scholar
  52. 52.
    Joulia-Ekaza D, Cabello G (2006) Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res 312:2401–2414. doi:10.1016/j.yexcr.2006.04.012 PubMedGoogle Scholar
  53. 53.
    Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439. doi:10.1046/j.1471-4159.2000.0750436.x PubMedGoogle Scholar
  54. 54.
    Kitazawa M, Trinh DN, LaFerla FM (2008) Inflammation induces tau pathology in inclusion-b0dy myositis model via glycogen syntase kinase-3β. Ann Neurol 64:15–24. doi:10.1002/ana.21325 PubMedGoogle Scholar
  55. 55.
    Ksiezak-Reding H, Dickson DW, Davies P, Yen SH (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci USA 84:3410–3414. doi:10.1073/pnas.84.10.3410 PubMedGoogle Scholar
  56. 56.
    Kudo T, Katayama T, Imaizumi K, Yasuda Y, Yatera M, Okochi M et al (2002) The unfolded protein response is involved in the pathology of Alzheimer’s disease. Ann N Y Acad Sci 977:349–355PubMedGoogle Scholar
  57. 57.
    Kumamoto T, Ueyama H, Tsumura H, Toyoshima I, Tsuda T (2004) Expression of lysosome-related proteins and genes in the skeletal muscles of inclusion-body myositis. Acta Neuropathol 107:59–65. doi:10.1007/s00401-003-0774-2 PubMedGoogle Scholar
  58. 58.
    LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509. doi:10.1038/nrn2168 PubMedGoogle Scholar
  59. 59.
    Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y et al (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163:83–95. doi:10.1083/jcb.200301115 PubMedGoogle Scholar
  60. 60.
    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105:3374–3379. doi:10.1073/pnas.0712145105 PubMedGoogle Scholar
  61. 61.
    Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med 86:1113–1126. doi:10.1007/s00109-008-0373-8 PubMedGoogle Scholar
  62. 62.
    Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J (2000) Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci USA 97:1456–1460. doi:10.1073/pnas.97.4.1456 PubMedGoogle Scholar
  63. 63.
    Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB et al (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biochem 279:12924–12934Google Scholar
  64. 64.
    Matus S, Lisbona F, Torres M, Leon C, Thielen P, Hetz C (2008) The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr Mol Med 8:157–172. doi:10.2174/156652408784221324 PubMedGoogle Scholar
  65. 65.
    Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13. doi:10.1042/BJ20070140 PubMedGoogle Scholar
  66. 66.
    Mirabella M, Alvarez RB, Bilak M, Engel WK, Askanas V (1996) Difference in expression of phosphorylated tau epitopes between sporadic inclusion-body myositis and hereditary inclusion-body myopathies. J Neuropathol Exp Neurol 55:774–786. doi:10.1097/00005072-199607000-00003 PubMedGoogle Scholar
  67. 67.
    Morosetti R, Mirabella M, Gliubuzzi C, Broccolini A, De Angelis L, Tagliafico E (2007) MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc Natl Acad Sci USA 103:16995–17000. doi:10.1073/pnas.0603386103 Google Scholar
  68. 68.
    Moslemi AR, Lindberg C, Oldfors A (1997) Analysis of multiple mitochondrial DNA deletions in inclusion body myositis. Hum Mutat 10:381–386. doi:10.1002/(SICI)1098-1004(1997)10:5<381::AID-HUMU8>3.0.CO;2-IPubMedGoogle Scholar
  69. 69.
    Needham M, Mastaglia FL (2007) Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 6:620–631. doi:10.1016/S1474-4422(07)70171-0 PubMedGoogle Scholar
  70. 70.
    Nogalska A, D’Agostino C, Engel WK, Askanas V (2008) Reservatrol, a polyphenol found in red wine, reduces NFκB-activation and myostatin in endoplasmic-reticulum-stress (ERS)-provoked cultured human muscle fibers (CHMFs): relevance to treatment of sporadic inclusion-body myositis (s-IBM). Ann Neurol 64:S9Google Scholar
  71. 71.
    Nogalska A, D’Agostino C, Engel WK, Davies KJ, Askanas V (2008) Decreased SIRT1 deacetylast activity in sporadic inclusion-body myositis. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.08.21
  72. 72.
    Nogalska A, Engel WK, McFerrin J, Kokame K, Komano H, Askanas V (2006) Homocysteine-induced endoplasmic reticulum protein (Herp) is up-regulated in sporadic inclusion-body myositis and in endoplasmic reticulum stress-induced cultured human muscle fibers. J Neurochem 96:1491–1499. doi:10.1111/j.1471-4159.2006.03668.x PubMedGoogle Scholar
  73. 73.
    Nogalska A, Wojcik S, Engel WK, McFerrin J, Askanas V (2007) Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis. Exp Neurol 204:610–618. doi:10.1016/j.expneurol.2006.12.014 PubMedGoogle Scholar
  74. 74.
    Olanow CW, McNaught KS (2006) Ubiquitin-proteasome system and Parkinson’s disease. Mov Disord 21:1806–1823. doi:10.1002/mds.21013 PubMedGoogle Scholar
  75. 75.
    Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C (2006) Mitochondrial abnormalities in inclusion-body myositis. Neurology 66:S49–S55. doi:10.1212/01.wnl.0000192127.63013.8d PubMedGoogle Scholar
  76. 76.
    Paciello O, Wojcik S, Engel WK, McFerrin J, Askanas V (2006) Parkin and its association with α-synuclein and AßPP in inclusion-body myositis and AßPP over-expressing cultured human muscle fibers. Acta Myol 25:13–22PubMedGoogle Scholar
  77. 77.
    Prayson RA, Cohen ML (1997) Ubiquitin immunostaining and inclusion-body myositis: study of 30 patients with inclusion body myositis. Hum Pathol 28:887–892. doi:10.1016/S0046-8177(97)90002-2 PubMedGoogle Scholar
  78. 78.
    Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L et al (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754. doi:10.1074/jbc.M602909200 PubMedGoogle Scholar
  79. 79.
    Santorelli FM, Sciacco M, Tanji K, Shanske S, Vu TH, Golzi V et al (1996) Multiple mitochondrial DNA deletions in sporadic inclusion-body myositis: a study of 56 patients. Ann Neurol 39:789–795. doi:10.1002/ana.410390615 PubMedGoogle Scholar
  80. 80.
    Sarkozi E, Askanas V, Johnson SA, McFerrin J, Engel WK (1994) Expression of β-amyloid precursor protein gene is developmentally regulated in human muscle fibers in vivo and in vitro. Exp Neurology 128:27–33Google Scholar
  81. 81.
    Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L et al (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160:1655–1667PubMedGoogle Scholar
  82. 82.
    Schmidt J, Barthel K, Wrede A, Salajegheh M, Bahr M, Dalakas MC (2008) Interrelation of inflammatory and APP in sIBM: IL-1β induces accumulation of β-amyloid in skeletal muscle. Brain 131:1228–1240. doi:10.1093/brain/awn053 PubMedGoogle Scholar
  83. 83.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  84. 84.
    Selkoe DJ (2003) Aging, amyloid, and Alzheimer’s disease: a perspective in honor of Carl Cotman. Neurochem Res 28:1705–1713. doi:10.1023/A:1026065122854 PubMedGoogle Scholar
  85. 85.
    Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R et al (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293:263–269. doi:10.1126/science.1060627 PubMedGoogle Scholar
  86. 86.
    Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540. doi:10.1038/990114 PubMedGoogle Scholar
  87. 87.
    Sisodia S, St. George-Hyslop PH (2002) Gamma-secretase, Notch, Abeta, and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–290. doi:10.1038/nrn785 PubMedGoogle Scholar
  88. 88.
    Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A et al (1999) The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem Biophys Res Commun 262:152–156. doi:10.1006/bbrc.1999.1167 PubMedGoogle Scholar
  89. 89.
    Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588. doi:10.1126/science.7545313 PubMedGoogle Scholar
  90. 90.
    Taira T, Saito YY, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5:213–218. doi:10.1038/sj.embor.7400074 PubMedGoogle Scholar
  91. 91.
    Terracciano C, Engel WK, Askanas V (2008) In sporadic inclusion-body myositis (s-IBM) muscle biopsies, cytochrome oxidase (COX) negative muscle fibers do not correlate with either inflammation or with aggregates containing amyloid-β (Aβ) or phosphorylated tau (p-tau). Neurology 70:A304. doi:10.1212/01.wnl.0000296829.66406.14 Google Scholar
  92. 92.
    Terracciano C, Nogalska A, Engel WK, Askanas V (2008) Lithium exerts a beneficial effect on amyloid-β precursor protein (AβPP)-overexpressing cultured human muscle fibers (CHMFs). Ann Neurol 64:S12Google Scholar
  93. 93.
    Terracciano C, Nogalska A, Engel WK, Askanas V (2008) Novel demonstration of phosphorylated amyloid-β precursor protein (AßPP) in sporadic inclusion-body myositis (s-IBM) muscle fibers. Neurology 70:A304. doi:10.1212/01.wnl.0000296829.66406.14 Google Scholar
  94. 94.
    Terracciano C, Nogalska A, Engel WK, Wojcik S, Askanas V (2008) In inclusion-body myositis muscle fibers, Parkinson-associated DJ-1 is increased and oxidized. Free Radic Biol Med 45:773–779PubMedCrossRefGoogle Scholar
  95. 95.
    Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8:663–674. doi:10.1038/nri2359 PubMedGoogle Scholar
  96. 96.
    Triantafilou M, Fradelizi D, Triantafilou K (2001) Major histocompatibility class one molecule associates with glucose regulated protein (GRP) 78 on the cell surface. Hum Immunol 62:764–770. doi:10.1016/S0198-8859(01)00269-5 PubMedGoogle Scholar
  97. 97.
    Tsai YC, Fishman PS, Thakor NV, Oyler GA (2003) Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 278:22044–22055. doi:10.1074/jbc.M212235200 PubMedGoogle Scholar
  98. 98.
    Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3:e3135. doi:10.1371/journal.pone.0003135 PubMedGoogle Scholar
  99. 99.
    van Leeuwen FW, Hol EM, Fischer DF (2006) Frameshift proteins in Alzheimer’s disease and in other conformational disorders: time for the ubiquitin-proteasome system. J Alzheimers Dis 9:319–325PubMedGoogle Scholar
  100. 100.
    Vaquero A, Sternglanz R, Reinberg D (2007) NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26:5505–5520. doi:10.1038/sj.onc.1210617 PubMedGoogle Scholar
  101. 101.
    Vattemi G, Checler F, Engel WK, Askanas V (2003) Amyloid-β42 is preferentially deposited in muscle biopsies of patients with sporadic inclusion-body myositis (s-IBM). Neurology 60:333–334Google Scholar
  102. 102.
    Vattemi G, Engel WK, McFerrin J, Askanas V (2003) Cystatin C colocalizes with amyloid-β and co-immunoprecipitates with amyloid-β precursor protein in sporadic inclusion-body myositis muscle. J Neurochem 85:1539–1546. doi:10.1046/j.1471-4159.2003.01798.x PubMedGoogle Scholar
  103. 103.
    Vattemi G, Engel WK, McFerrin J, Askanas V (2004) Endoplasmic reticulum stress and unfolded protein response in inclusion-body myositis muscle. Am J Pathol 164:1–7PubMedGoogle Scholar
  104. 104.
    Vattemi G, Engel WK, McFerrin J, Buxbaum JD, Pastorino L, Askanas V (2001) Presence of BACE1 and BACE2 in muscle fibres of patients with sporadic inclusion-body myositis. Lancet 358:1962–1964. doi:10.1016/S0140-6736(01)06969-0 PubMedGoogle Scholar
  105. 105.
    Vattemi G, Engel WK, McFerrin J, Pastorino L, Buxbaum JD, Askanas V (2003) BACE1 and BACE2 in pathologic and normal human muscle. Exp Neurol 179:150–158PubMedGoogle Scholar
  106. 106.
    Vattemi G, Kefi M, Engel WK, Askanas V (2003) Nicastrin, a novel protein participating in amyloid-β production, is overexpressed in sporadic inclusion-body myositis muscle. Neurology 60:A315Google Scholar
  107. 107.
    Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66:S69–S73. doi:10.1212/01.wnl.0000192107.17175.39 PubMedGoogle Scholar
  108. 108.
    Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068. doi:10.1146/annurev.biochem.68.1.1015 PubMedGoogle Scholar
  109. 109.
    Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184. doi:10.1111/j.1471-4159.2006.04426.x PubMedGoogle Scholar
  110. 110.
    Wang H-Q, Takahashi R (2006) Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson’s disease. Antioxid Redox Signal 9:553–561. doi:10.1089/ars.2006.1524 Google Scholar
  111. 111.
    Wojcik S, Engel WK, McFerrin J, Askanas V (2005) Myostatin is increased and complexes with amyloid-beta within sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 110:173–177. doi:10.1007/s00401-005-1035-3 PubMedGoogle Scholar
  112. 112.
    Wojcik S, Engel WK, McFerrin J, Paciello O, Askanas V (2006) AbetaPP-oeverexpression and proteasome inhibition increase αB-crystallin in cultured human muscle: relevance to inclusion-body myositis. Neuromuscul Disord 16:839–844. doi:10.1016/j.nmd.2006.08.009 PubMedGoogle Scholar
  113. 113.
    Wojcik S, Engel WK, Yan R, McFerrin J, Askanas V (2007) NOGO is increased and binds to BACE 1 in sporadic inclusion-body myositis and in AßPP-overexpressing cultured human muscle fibers. Acta Neuropathol 114:517–526. doi:10.1007/s00401-007-0281-y PubMedGoogle Scholar
  114. 114.
    Wojcik S, Nogalska A, McFerrin J, Engel WK, Oledzka G, Askanas V (2007) Myostatin precursor protein is increased and associates with amyloid-beta precursor protein in inclusion-body myositis culture model. Neuropathol Appl Neurobiol 33:238–242. doi:10.1111/j.1365-2990.2006.00821.x PubMedGoogle Scholar
  115. 115.
    Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Mol Endocrinol 21:1745–1755. doi:10.1210/me.2007-0079 PubMedGoogle Scholar
  116. 116.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-κappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. doi:10.1038/sj.emboj.7600244 PubMedGoogle Scholar
  117. 117.
    Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–2627. doi:10.1111/j.1742-4658.2005.04708.x PubMedGoogle Scholar
  118. 118.
    Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109. doi:10.1212/01.wnl.0000192306.98198.ec PubMedGoogle Scholar
  119. 119.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462. doi:10.1038/nature07203 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Neurology, USC Neuromuscular CenterGood Samaritan Hospital, University of Southern California Keck School of MedicineLos AngelesUSA

Personalised recommendations