Acta Neuropathologica

, Volume 116, Issue 3, pp 223–234 | Cite as

Pathogenesis of proximal autosomal recessive spinal muscular atrophy

Review

Abstract

Although it is known that deletions or mutations of the SMN1 gene on chromosome 5 cause decreased levels of the SMN protein in subjects with proximal autosomal recessive spinal muscular atrophy (SMA), the exact sequence of pathological events leading to selective motoneuron cell death is not fully understood yet. In this review, new findings regarding the dual cellular role of the SMN protein (translocation of β-actin to axonal growth cones and snRNP biogenesis/pre-mRNA splicing) were integrated with recent data obtained by detailed neuropathological examination of SMA and control subjects. A presumptive series of 10 pathogenetic events for SMA is proposed as follows: (1) deletions or mutations of the SMN1 gene, (2) increased SMN mRNA decay and reduction in full-length functional SMN protein, (3) impaired motoneuron axono- and dendrogenesis, (4) failure of motoneurons to form synapses with corticospinal fibers from upper motoneurons, (5) abnormal motoneuron migration towards ventral spinal roots, (6) inappropriate persistence of motoneuron apoptosis due to impaired differentiation and motoneuron displacement, (7) substantial numbers of motoneurons continuing to migrate abnormally (“heterotopic motoneurons”) and entering into the ventral roots, (8) attracted glial cells following these heterotopic motoneurons, which form the glial bundles of ventral roots, (9) impaired axonal transport of actin, causing remaining motoneurons to become chromatolytic, and (10) eventual death of all apoptotic, heterotopic and chromatolytic neurons, with apoptosis being more rapid and predominating in the earlier stages, with death of heterotopic and chromatolytic neurons occurring more slowly by necrosis during the later stages of SMA. According to this model, the motoneuron axonopathy is more important for pathogenesis than the ubiquitous nuclear splicing deficit. It is also supposed that individually variable levels of SMN protein, together with influences of other phenotype modifier genes and their products, cause the clinical SMA spectrum through differential degree of motoneuron functional loss.

Keywords

Migration Motoneurons Pathogenesis Spinal muscular atrophy SMN1 gene 

Notes

Acknowledgments

The help of Dr. Patrick R. Hof (Mount Sinai School of Medicine, NY) in the preparation of this manuscript is greatly appreciated. Figure 3a is kindly provided by Jadranka Sertic and 3b by Glenn E. Morris.

References

  1. 1.
    Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849PubMedCrossRefGoogle Scholar
  2. 2.
    Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12:59–65PubMedCrossRefGoogle Scholar
  3. 3.
    Araki S, Hayashi M, Tamagawa K, Saito M, Kato S, Komori T, Sakakihara Y, Mizutani T, Oda M (2003) Neuropathological analysis in spinal muscular atrophy type II. Acta Neuropathol 106:441–448PubMedCrossRefGoogle Scholar
  4. 4.
    Avila AM, Burnett BG, Taye AA, Gabanella F, Knight MA, Hartenstein P, Cizman Z, Di Prospero NA, Pellizzoni L, Fischbeck KH, Sumner CJ (2007) Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117:659–671PubMedCrossRefGoogle Scholar
  5. 5.
    Battaglia G, Princivalle A, Forti F, Lizier C, Zeviani M (1997) Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum Mol Genet 6:1961–1971PubMedCrossRefGoogle Scholar
  6. 6.
    Beattie CE, Carrel TE, McWhorter ML (2007) Fishing for a mechanism: using zebrafish to understand spinal muscular atrophy. J Child Neurol 22:995–1003PubMedCrossRefGoogle Scholar
  7. 7.
    Béchade C, Rostaing P, Cisterni C, Kalisch R, La Bella V, Pettmann B, Triller A (1999) Subcellular distribution of SMN protein: possible involvement in nucleoplasmic and dendritic transport. Eur J Neurosci 11:293–304PubMedCrossRefGoogle Scholar
  8. 8.
    Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489PubMedCrossRefGoogle Scholar
  9. 9.
    Brichta L, Garbes L, Jedrzejowska M, Grellscheid SN, Holker I, Zimmermann K, Wirth B (2008) Nonsense-mediated messenger RNA decay of survival motor neuron 1 causes spinal muscular atrophy. Hum Genet 123:141–153PubMedCrossRefGoogle Scholar
  10. 10.
    Briese M, Esmaeili B, Sattelle DB (2005) Is spinal muscular atrophy the result of defects in motor neuron processes? BioEssays 27:946–957PubMedCrossRefGoogle Scholar
  11. 11.
    Carrel TL, McWhorter ML, Workman E, Zhang H, Wolstencroft EC, Lorson C, Bassell GJ, Burghes AH, Beattie CE (2006) Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis. J Neurosci 26:11014–11022PubMedCrossRefGoogle Scholar
  12. 12.
    Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10:120–125PubMedCrossRefGoogle Scholar
  13. 13.
    Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813PubMedCrossRefGoogle Scholar
  14. 14.
    Chou SM, Nonaka I (1978) Werdnig-Hoffmann disease: proposal of a pathogenetic mechanism. Acta Neuropathol 41:45–54PubMedCrossRefGoogle Scholar
  15. 15.
    Chou SM, Wang HS (1997) Aberrant glycosylation/phoshorylation in chromatolytic motoneurons of Werdnig–Hoffmann disease. J Neurol Sci 152:198–209PubMedCrossRefGoogle Scholar
  16. 16.
    Clarke PGH (1994) Neuronal death in the development of the vertebrate central nervous system. Sem Neurosci 6:291–297CrossRefGoogle Scholar
  17. 17.
    Coutts M, Keirstead HS (2008) Stem cells for the treatment of spinal cord injury. Exp Neurol 209:368–377PubMedCrossRefGoogle Scholar
  18. 18.
    Cuscò I, Barceló MJ, Rojas-García R, Illa I, Gamez J, Cervera C, Pou A, Izquierdo G, Baiget M, Tizzano EF (2006) SMN copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings. J Neurol 253:21–25PubMedCrossRefGoogle Scholar
  19. 19.
    DiMatteo D, Callahan S, Kmiec EB (2008) Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy. Exp Cell Res 314:878–886PubMedCrossRefGoogle Scholar
  20. 20.
    Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach. Saunders Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164:831–42PubMedCrossRefGoogle Scholar
  22. 22.
    Echaniz-Laguna A, Miniou P, Bartholdi D, Melki J (1999) The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements. Am J Hum Genet 64:1365–1370PubMedCrossRefGoogle Scholar
  23. 23.
    Eggert C, Chari A, Laggerbauer B, Fischer U (2006) Spinal muscular atrophy: the RNP connection. Trends Mol Med 12:113–121PubMedCrossRefGoogle Scholar
  24. 24.
    Fan L, Simard LR (2002) Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum Mol Genet 11:1605–1614PubMedCrossRefGoogle Scholar
  25. 25.
    Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on realtime light-cycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368PubMedCrossRefGoogle Scholar
  26. 26.
    Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosome biogenesis. Cell 90:1023–1029PubMedCrossRefGoogle Scholar
  27. 27.
    Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvoogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Diff 14:1237–1243CrossRefGoogle Scholar
  28. 28.
    Gavrilina TO, McGovern VL, Workman E, Crawford TO, Gogliotti RG, DiDonato CJ, Monani UR, Morris GE, Burghes AH (2008) Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum Mol Genet 17:1063–1075PubMedCrossRefGoogle Scholar
  29. 29.
    Ghatak NR (1978) Spinal roots in Werdnig-Hoffmann disease. Acta Neuropathol 41:1–7PubMedCrossRefGoogle Scholar
  30. 30.
    Giavazzi A, Setola V, Simonati A, Battaglia G (2006) Neuronal-specific roles of the survival motor neuron protein: evidence from survival motor neuron expression patterns in the developing human central nervous system. J Neuropathol Exp Neurol 65:267–277PubMedGoogle Scholar
  31. 31.
    Giesemann T, Rathke-Hartlieb S, Rothkegel M, Barthsch JW, Buchmeier S, Jockusch BM, Jockusch H (1999) A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J Biol Chem 274:37908–37914PubMedCrossRefGoogle Scholar
  32. 32.
    Greenfield JC, Stern RO (1927) The anatomical identity of the Werdnig-Hoffmann and Oppenheim forms of infantile muscular atrophy. Brain 50:652–686CrossRefGoogle Scholar
  33. 33.
    Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH (2005) Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 58:194–202PubMedCrossRefGoogle Scholar
  34. 34.
    Harper JM, Krishnan C, Darman JS, Deshpande DM, Peck S, Shats I, Backovic S, Rothstein JD, Kerr DA (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101:7123–7128PubMedCrossRefGoogle Scholar
  35. 35.
    Hausmanowa-Petrusiewicz I, Zaremba J (2000) Proximal spinal muscular atrophy of childhood. In: Deymeer F (ed) Neuromuscular diseases: From basic mechanisms to clinical menagement. Basel: Karger, Monogr Clin Neurosci 18:163–176Google Scholar
  36. 36.
    Hirano M, Angelini C, Montagna P, Hays AP, Tanji K, Mitsumoto H, Gordon PH, Naini AB, DiMauro S, Rowland LP (2008) Amyotrophic lateral sclerosis with ragged-red fibers. Arch Neurol 65:403–406PubMedCrossRefGoogle Scholar
  37. 37.
    Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70PubMedCrossRefGoogle Scholar
  38. 38.
    Iwahashi H, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (1997) Synergistic antiapoptotic activity between bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390:413–417PubMedCrossRefGoogle Scholar
  39. 39.
    Jablonka S, Bandilla M, Wiese S, Buhler D, Wirth B, Sendtner M, Fischer U (2001) Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Hum Mol Genet 10:497–505PubMedCrossRefGoogle Scholar
  40. 40.
    Jarecki J, Chen X, Bernardino A, Coovert DD, Whitney M, Burghes A, Stack J, Pollok BA (2005) Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet 14:2003–2018PubMedCrossRefGoogle Scholar
  41. 41.
    Kernochan LE, Russo ML, Woodling NS, Huynh TN, Avila AM, Fischbeck KH, Sumner CJ (2005) The role of histone acetylation in SMN gene expression. Hum Mol Genet 14:1171–1182PubMedCrossRefGoogle Scholar
  42. 42.
    Kerr DA, Nery JP, Traystman RJ, Chau BN, Hardwick JM (2000) Survival motor neuron protein modulates neuron-specific apoptosis. Proc Natl Acad Sci USA 97:13312–13317PubMedCrossRefGoogle Scholar
  43. 43.
    Kolb SJ, Gubitz AK, Olszewski RF Jr, Ottinger E, Sumner CJ, Fischbeck KH, Dreyfuss G (2006) A novel cell immunoassay to measure survival of motor neurons protein in blood cells. BMC Neurology 6:6PubMedCrossRefGoogle Scholar
  44. 44.
    La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79PubMedCrossRefGoogle Scholar
  45. 45.
    Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857PubMedCrossRefGoogle Scholar
  46. 46.
    Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165PubMedCrossRefGoogle Scholar
  47. 47.
    Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269PubMedCrossRefGoogle Scholar
  48. 48.
    Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, Zhang SC (2008) Directed differentiation of ventral progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26:886–893PubMedCrossRefGoogle Scholar
  49. 49.
    Lorson CL, Strasswimmer J, Yao J-M, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with SMA severity. Nat Genet 19:63–66PubMedCrossRefGoogle Scholar
  50. 50.
    Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci 96:6307–6311PubMedCrossRefGoogle Scholar
  51. 51.
    Lunn MR, Root DE, Martino AM, Flaherty SP, Kelley BP, Coovert DD, Burghes AH, Man NT, Morris GE, Zhou J, Androphy EJ, Sumner CJ, Stockwell BR (2004) Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem Biol 11:1489–1493PubMedCrossRefGoogle Scholar
  52. 52.
    Mailman MD, Heinz JW, Papp AC, Snyder PJ, Sedra MS, Wirth B, Burghes AH, Prior TW (2002) Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med 4:20–26PubMedCrossRefGoogle Scholar
  53. 53.
    Man NT, Humphrey E, Le Thanh L, Fuller HR, Lynch TA, Sewry CA, Goodwin PR, MacKenzie AE, Morris GE (2008) A two-site ELISA can quantify up-regulation of SMN protein by drugs for spinal muscular atrophy. Neurology (accepted)Google Scholar
  54. 54.
    McWhorter ML, Monani UR, Burghes AH, Beattie CE (2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 162:919–931PubMedCrossRefGoogle Scholar
  55. 55.
    Monani UR (2005) Spinal muscular atrophy: A deficiency in a ubiqutous protein; a motor neuron specific disease. Neuron 48:885–896PubMedCrossRefGoogle Scholar
  56. 56.
    Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183PubMedCrossRefGoogle Scholar
  57. 57.
    Monani UR, McPherson JD, Burghes AH (1999) Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT). Biochim Biophys Acta 1445:330–336PubMedGoogle Scholar
  58. 58.
    Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, Morris GE, Burghes AH (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(–/–) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339PubMedCrossRefGoogle Scholar
  59. 59.
    Munsat TL, Davies KE (1992) International SMA consortium meeting. Neuromuscul Disord 2:423–428PubMedCrossRefGoogle Scholar
  60. 60.
    Murray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH (2008) Selective vulnerability of motor neurons and disociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 17:949–962PubMedCrossRefGoogle Scholar
  61. 61.
    Nayak MS, Kim Y-S, Goldman M, Keirstead HS, Kerr DA (2006) Cellular therapies in motor neuron diseases. Biochim Biophys Acta 1762:1128–1138PubMedGoogle Scholar
  62. 62.
    Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501PubMedCrossRefGoogle Scholar
  63. 63.
    Oprea GE, Kröber S, McWhorter ML, Rossoll W, Müller S, Krawcak M, Bassell GJ, Beattie CE, Wirth B (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320:524–527PubMedCrossRefGoogle Scholar
  64. 64.
    Pagliardini S, Giavazzi A, Setola V, Lizier C, Di Luca M, DeBiasi S, Battaglia G (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) in the developing rat spinal cord. Hum Mol Genet 9:47–56PubMedCrossRefGoogle Scholar
  65. 65.
    Parker GC, Li X, Anguelov RA, Toth G, Cristescu A, Acsadi G (2008) Survival motor neuron protein regulates apoptosis in an in vitro model of spinal muscular atrophy. Neurotox Res 13:39–48PubMedCrossRefGoogle Scholar
  66. 66.
    Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW (1998) Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet 63:1712–1723PubMedCrossRefGoogle Scholar
  67. 67.
    Renoncourt Y, Carroll P, Filippi P, Arce V, Alonso S (1998) Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons. Mech Dev 79:185–197PubMedCrossRefGoogle Scholar
  68. 68.
    Rossoll W, Kroning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNPQ: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11:93–105PubMedCrossRefGoogle Scholar
  69. 69.
    Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812PubMedCrossRefGoogle Scholar
  70. 70.
    Sato K, Eguchi Y, Kodama TS, Tsujimoto Y (2000) Regions essential for the interaction between Bcl-2 and SMN, the spinal muscular atrophy disease gene product. Cell Death Differ 7:374–383PubMedCrossRefGoogle Scholar
  71. 71.
    Scharf JM, Endrizzi MG, Wetter A, Huang S, Thompson TG, Zerres K, Dietrich WF, Wirth B, Kunkel LM (1998) Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 20:83–86PubMedCrossRefGoogle Scholar
  72. 72.
    Schmid A, Di Donato CJ (2007) Animal models of spinal muscular atrophy. J Child Neurol 22:1004–1012PubMedCrossRefGoogle Scholar
  73. 73.
    Selenko P, Sprangers R, Stier G, Bühler D, Fischer U, Sattler M (2001) SMN Tudor domain structure and its interaction with Sm proteins. Nature Struct Biol 8:27–31PubMedCrossRefGoogle Scholar
  74. 74.
    Setola V, Terao M, Locatelli D, Bassanini S, Garattini E, Battaglia G (2007) Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis. Proc Natl Acad Sci USA 104:1959–1964PubMedCrossRefGoogle Scholar
  75. 75.
    Simic G, Seso-Simic D, Lucassen P, Islam A, Krsnik Z, Cviko A, Jelasic D, Barisic N, Winblad B, Kostovic I, Kruslin B (2000) Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 59:398–407PubMedGoogle Scholar
  76. 76.
    Simic G, Mladinov M, Seso-Simic D, Jovanov-Milosevic N, Islam A, Pajtak A, Barisic N, Sertic J, Lucassen PJ, Hof PR, Kruslin B (2008) Abnormal motoneuron migration, differentiation and axon outgrowth in spinal muscular atrophy. Acta Neuropathol 115:313–326PubMedCrossRefGoogle Scholar
  77. 77.
    Skordis LA, Dunckley MG, Yue B, Eperon IC, Muntoni F (2003) Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci USA 100:4114–4119PubMedCrossRefGoogle Scholar
  78. 78.
    Smith M, Calabro V, Chong B, Gardiner N, Cowie S, du Sart D (2007) Population screening and cascade testing for carriers of SMA. Eur J Hum Genet 15:759–766PubMedCrossRefGoogle Scholar
  79. 79.
    Sumner CJ (2006) Therapeutics development for spinal muscular atrophy. NeuroRx 3:235–245PubMedCrossRefGoogle Scholar
  80. 80.
    Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54:647–654PubMedCrossRefGoogle Scholar
  81. 81.
    Tarnopolsky MA, Bourgeois JM, Fu M-H, Kataeva G, Shah J, Simon DK, Mahoney D, Johns D, MacKay N, Robinson BH (2004) Novel SCO2 mutation (G1521A) presenting as a spinal muscular atrophy type I phenotype. Am J Med Genet 125A:310–314CrossRefPubMedGoogle Scholar
  82. 82.
    Tizzano E, Baiget M (2001) Molecular bases of spinal muscular atrophy: the survival motor neuron gene. Contrib Science 2:35–42Google Scholar
  83. 83.
    Veldink JH, Kalmijn S, Van der Hout AH, Lemmink HH, Groeneveld GJ, Lummen C, Scheffer H, Wokke JH, Van den Berg LH (2005) SMN genotypes producing less SMN protein increase susceptibility to and severity of sporadic ALS. Neurology 65:820–825PubMedCrossRefGoogle Scholar
  84. 84.
    Wang W, DiMatteo D, Funanage VL, Scavivna M (2005) Increased susceptibility of spinal muscular atrophy fibroblasts to camptothecin-induced cell death. Mol Genet Metabol 85:38–45CrossRefGoogle Scholar
  85. 85.
    Werdnig G (1891) Zwei frühinfantile hereditäre Fälle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage. Arch Psychiatr Nervenkr 22:437–481CrossRefGoogle Scholar
  86. 86.
    Wharton S, Ince PG (2003) Pathology of motor neuron disorders. In: Shaw PJ, Strong MJ (eds) Motor neuron disorders. Blue books of practical neurology, book 28. Butterworth-Heineman, Philadelphia, pp 17–49Google Scholar
  87. 87.
    Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T, Merianda TT, Sylvester J, van Minnen J, Twiss JL (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25:778–791PubMedCrossRefGoogle Scholar
  88. 88.
    Wirth B, Brichta L, Hahnen E (2006) Spinal muscular atrophy: from gene to therapy. Sem Pediat Neurol 13:121–131CrossRefGoogle Scholar
  89. 89.
    Wolstencroft EC, Mattis V, Bajer AA, Young PJ, Lorson CL (2005) A non-sequencespecific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14:1199–1210PubMedCrossRefGoogle Scholar
  90. 90.
    Yachnis AT, Giovanini MA, Eskin TA, Reier PJ, Anderson DK (1998) Developmental patterns of bcl-2 and bcl-x polypeptide expression in the human spinal cord. Exp Neurol 150:82–97PubMedCrossRefGoogle Scholar
  91. 91.
    Young P, Le TT, Dunckley M, Nguyen TM, Burghes AH, Morris GE (2001) Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN. Exp Cell Res 265:252–261PubMedCrossRefGoogle Scholar
  92. 92.
    Young PJ, Day PM, Androphy EJ, Morris GE, Lorson CL (2002) A direct interaction between survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem 277:2852–2859PubMedCrossRefGoogle Scholar
  93. 93.
    Zerres K, Rudnik-Schöneborn S (1995) Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol 52:518–523PubMedGoogle Scholar
  94. 94.
    Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23:6627–6637PubMedGoogle Scholar
  95. 95.
    Zhang HL, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ (2006) Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J Neurosci 26:8622–8632PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang Z, Lotti F, Dittmar K, Younis I, Wan L, Kasim M, Dreyfuss G (2008) SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread deficits in splicing. Cell 133:585–600PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Neuroscience, Croatian Institute for Brain Research, School of MedicineZagreb UniversityZagrebCroatia

Personalised recommendations