Acta Neuropathologica

, Volume 113, Issue 5, pp 559–568 | Cite as

Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications

  • Jane Yip
  • Jean-Jacques Soghomonian
  • Gene J. BlattEmail author
Original Paper


The recent identification of decreased protein levels of glutamate decarboxylase (GAD) 65 and 67 isoforms in the autistic cerebellar tissue raises the possibility that abnormal regulation of GABA production in individual neurons may contribute to the clinical features of autism. Reductions in Purkinje cell number have been widely reported in autism. It is not known whether the GAD changes also occur in Purkinje cells at the level of transcription. Using a novel approach, the present study quantified GAD67 mRNA, the most abundant isoform in Purkinje cells, using in situ hybridization in adult autistic and control cases. The results indicate that GAD67 mRNA level was reduced by 40% in the autistic group (P < 0.0001; two-tailed t test), suggesting that reduced Purkinje cell GABA input to the cerebellar nuclei potentially disrupts cerebellar output to higher association cortices affecting motor and/or cognitive function. These findings may also contribute to the understanding of previous reports of alterations in the GABAergic system in limbic and cerebro-cortical areas contributing to a more widespread pathophysiology in autistic brains.


Glutamic acid decarboxylase (GAD) 67 mRNA Autism Purkinje cells GABA Pathophysiology 



We gratefully acknowledge the Harvard Brain Tissue Resource Center, the Autism Tissue Program (ATP) and the University of Miami and Maryland Brain Banks for providing brain tissues for this study. This work is supported by grants NIH NICHD #HD39459-04 and the Hussman Foundation (GJB, P.I.). We thank Linh Nguyen for her excellent technical assistance with in situ hybridization and Rita Marcon for assistance with tissue cutting.


  1. 1.
    Aggensteiner M, Reiser G (2003) Expression of the brain-specific membrane adapter protein p42IP4/centaurin alpha, a Ins(1,3,4,5)P4/PtdIns(3,4,5)P3 binding protein, in developing rat brain. Dev Brain Res 142:77–87CrossRefGoogle Scholar
  2. 2.
    Arin DM, Bauman ML, Kemper TL (1991) The distribution of Purkinje cell loss in the cerebellum in autism. Neurology 41(Suppl):307Google Scholar
  3. 3.
    Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997) Cleft palate and decrased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94(12): 6496–6499PubMedCrossRefGoogle Scholar
  4. 4.
    Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874PubMedGoogle Scholar
  5. 5.
    Bauman ML, Kemper TL (1994) Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL (eds) The neurobiology of autism. John Hopkins University Press, Baltimore, pp 119–145Google Scholar
  6. 6.
    Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23:183–187PubMedCrossRefGoogle Scholar
  7. 7.
    Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31(6):537–543PubMedCrossRefGoogle Scholar
  8. 8.
    Blatt GJ (2005) GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol 71:167–178PubMedGoogle Scholar
  9. 9.
    Brooksbank BW, Atkinson DJ, Balazs R (1981) Biochemical development of the human brain. II. Some parameters of the GABAergic system. Dev Neurosci 4(3):188–200PubMedGoogle Scholar
  10. 10.
    Bu DF, Erlander MG, Hiltz BC, Tillakaratne NJK, Kaufman DI, Wagber-McPherson CB, Evan GA, Tobin AJ (1992) Two human glutamate decarboxylase, 65 kDa GAD and 67 kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89:2115–2119PubMedCrossRefGoogle Scholar
  11. 11.
    Buxbaum JD, Silverman JM, Smith CJ, Kilifarski M, Reichert J, Hollander E, Lawlor BA, Fitzgerald M, Greenberg DA, Davis KL (2001) Evidence for a susceptibility gene for autism chromosome 2 for genetic heterogeneity. Am J Hum Genet 68(6):1514–1520PubMedCrossRefGoogle Scholar
  12. 12.
    Center for Disease Control (CDC): 2006 autismspeaks.orgGoogle Scholar
  13. 13.
    Chan-Palay V, Palay SL, Wu JY (1979) Gamma-aminobutyric acid pathways in the cerebellum studied by retrograde and anterograde transport of glutamic acid decarboxylase antibody after in vivo injections. Anat Embryol (Berl) 157(1):1–14CrossRefGoogle Scholar
  14. 14.
    Chesselet MF, Weiss L, Wuenschell C, Tobin AJ, Affolter H-U (1987) Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia: an in situ hybridization study in the rodent brain. J Comp Neurol 262:125–140PubMedCrossRefGoogle Scholar
  15. 15.
    Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502PubMedCrossRefGoogle Scholar
  16. 16.
    Crepel F, Mariani J (1976) Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the weaver mutant mouse. J Neurobiol 7(6):579–582PubMedCrossRefGoogle Scholar
  17. 17.
    Crepel F, Delhaye-Bouchaud N, Guastavino JM, Sampaio I (1980) Multiple innervation of cerebellar Purkinje cells by climbing fibers in staggerer mutant mouse. Nature 283(5746):483–484PubMedCrossRefGoogle Scholar
  18. 18.
    Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) Elevated plasma GABA levels in autistic youngsters: stimulus for a GABA hypothesis in autism. Med Sci Monitor 8(8):PR1–PR6Google Scholar
  19. 19.
    Drengler SM, Oltman GA (1993) Rapid increases in cerebellar Purkinje cell glutamic acid decarboxylase GAD67 mRNA after lesion-induced increases in cell firing. Brain Res 615(1):175–179PubMedCrossRefGoogle Scholar
  20. 20.
    Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991a) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100CrossRefGoogle Scholar
  21. 21.
    Erlander MG, Tobin AJ (1991b) The structural and functional heterogeneity of glutamate decarboxylase. A review. Neurochem Res 16:215–226CrossRefGoogle Scholar
  22. 22.
    Esclapez M, Tillakaratne NJK, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with non radioactive in situ hybridization methods. J Comp Neurol 331:339–362PubMedCrossRefGoogle Scholar
  23. 23.
    Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14(3 Pt 2):1834–1855PubMedGoogle Scholar
  24. 24.
    Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Mer A (2002a) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22(2):171–175CrossRefGoogle Scholar
  25. 25.
    Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002b) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psych 52:805–810CrossRefGoogle Scholar
  26. 26.
    Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34(6):689–706PubMedCrossRefGoogle Scholar
  27. 27.
    Greger V, Knoll JH, Woolf F, Glatt K, Tyndale RF, DeLorey TM, Olsen RW, Tobin AJ, Sikela JM, Nakatsu Y et al (1995) The gamma-aminobutyric acid receptor gamma 3 subunit gene (GABARG3) is tightly linked to the alpha 5 subunit gene (GABRA5) on human chromosome 15q11-q13 and is transcribed in the same orientation. Genomics 26(2):258–264PubMedCrossRefGoogle Scholar
  28. 28.
    Gepner B, Mestre DR (2002) Postural reactivity to fast visual motion differentiates autistic from children with Asperger syndrome. J Autism Dev Disord 32:231–238PubMedCrossRefGoogle Scholar
  29. 29.
    Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevinin V, Dwivedi Y, Grayson DR, Impagnateillo F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E (2000) Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57(11):1061–1069PubMedCrossRefGoogle Scholar
  30. 30.
    Hamilton SP, Woo JM, Carlson EJ, Ghanem E, Ekker M, Rubenstein JLR (2005) Analysis of four DLX homeobox genes in autistic probands. BMC Genetics 6:52PubMedCrossRefGoogle Scholar
  31. 31.
    Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN, Sun Z, Sampson AR, Lewis DA (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25(2):372–383PubMedCrossRefGoogle Scholar
  32. 32.
    Heckers S, stone D, Walsh J, Shick J, Koul P, Benes FM (2002) Differential hippocampal expression glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psych 59(6):521–529CrossRefGoogle Scholar
  33. 33.
    Hynd M, Lewohl JM, Scott HL, Dodd PR (2003) Biochemical and molecular studies using human autopsy brain tissue. J Neurochem 85:543–562PubMedCrossRefGoogle Scholar
  34. 34.
    IMGSAC (2001) A genomewide screen for autism: strong evidence for linkage to chromosome 2q, 7q, and 16p. Am J Hum Genet 69:570–581Google Scholar
  35. 35.
    Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95(26):15718–15723PubMedCrossRefGoogle Scholar
  36. 36.
    Jeneskog T, Padel Y (1984) An excitatory pathway through dorsal columns to rubrospinal cells in the cat. J Physiol 353:355–373PubMedGoogle Scholar
  37. 37.
    Jones RS (1988) Epileptiform events induced by GABA-antagonists in entorhinal cortical cells in vitro are partly mediated by NMDA receptors. Brain Res 457(1):113–121PubMedCrossRefGoogle Scholar
  38. 38.
    Jones MW, Kilpatrick IC, Phillipson OT (1988) Dopamine function in the prefrontal cortex of the rat is sensitive to a reduction of tonic GABA-mediated inhibition in the thalamic mediodorsal nucleus. Exp Brain Res 69(3):623–634PubMedCrossRefGoogle Scholar
  39. 39.
    Kalkman HO, Loetscher (2003) GAD67: the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis. J Neural Transm 110:803–812PubMedGoogle Scholar
  40. 40.
    Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250Google Scholar
  41. 41.
    Katz J, Nielsen KM, Soghomonian JJ (2005) Comparative effects of acute or chronic administration of levodopa to 6-hydroxydopamine-lesioned rats on the expression of glutamic acid decarboxylase in the neostriatum and GABAA receptors subunits in the substantia nigra pars reticulata. Neurosci 132(3):833–842CrossRefGoogle Scholar
  42. 42.
    Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56(2):720–723PubMedCrossRefGoogle Scholar
  43. 43.
    Kemper TL, Bauman ML (1998) Neuropathology of infantile autism. J Neuropathol Exp Neurol 57(7):645–652PubMedGoogle Scholar
  44. 44.
    Kern JK (2003) Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev 25(6):377–382PubMedCrossRefGoogle Scholar
  45. 45.
    Laprade N, Soghomonian JJ (1995) Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Brain Res Mol Brain Res 34(1):65–74PubMedCrossRefGoogle Scholar
  46. 46.
    Lauder JM, Han VKM, Henderson P, Verdoorn T, Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neurosci 2:4658–4693Google Scholar
  47. 47.
    Lauritsen M, Mors O, Mortensen PB, Ewald H (1999) Infantile autism and associated autosomal chromosome abnormalities: a register-based study and a literature survey. J Child Psychol Psych 40(3):335–345CrossRefGoogle Scholar
  48. 48.
    Legay F, Pelhate S, Tappaz M.L. (1982) Phylogenesis of brain glutamic acid decarboxylase from vertebrates: Immunohistochemical studies. J Neurochem 46:1478–1486CrossRefGoogle Scholar
  49. 49.
    Levisohn L, Cronin-golomb A, Schmahmann JD (2000) Neuropsychological consequence of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain 123:1041–1050PubMedCrossRefGoogle Scholar
  50. 50.
    Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacol 23(3):223–239CrossRefGoogle Scholar
  51. 51.
    Llinas RR, Walton KD, Lang EJ (2003) Cerebellum. In: Shepherd GM (eds) The synaptic organization of the brain, 5th ed. Oxford University Press, New York, pp 271–309Google Scholar
  52. 52.
    Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, Ritchie MD, Delong GR, Abramson RK, Wright HH, Cuccaro ML, Hussman JP, Gilbert JR, Pericak-Vance MA (2005) Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77:377–388PubMedCrossRefGoogle Scholar
  53. 53.
    Maddox LO, Menold MM, Bass MP, Rogala AR, Pericak-Vance MA, Vance JM, Gilbert JR (1999) Autistic disorder and chromosome 15q11-q13: construction and analysis of a BAC/PAC contig. Genomics 62(3):325–331PubMedCrossRefGoogle Scholar
  54. 54.
    Maniatis T, Frisch EF, Sambrook P (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  55. 55.
    Martin ER, Menold MM, Wolpert CM, Bass MP, Donnelly SL, Ravan SA, Zimmerman A, Gilbert JR, Vance JM, Maddox LO, Wright HH, Abramson RK, Delong GR, Cuccaro ML, Pericak-Vance MA (2000) Analysis of linkage disequilibrium in GABA receptor subunit genes in autistic disorder. Am J Med Genet 96:43–48PubMedCrossRefGoogle Scholar
  56. 56.
    Mari M, Castiello U, Marks D, Marraffa C, Prior M (2003) The reach to grasp movement in children with autism spectrum disorder. Phil Trans R. Soc Lond B 358:393–403CrossRefGoogle Scholar
  57. 57.
    Mariani J (1982) Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol 13(2):119–126PubMedCrossRefGoogle Scholar
  58. 58.
    Mengod G, Goudsmit E, Probst A, Palacios JM (1992) In situ hybridization in the human hypothalamus. Prog Brain Res 93:45–55PubMedGoogle Scholar
  59. 59.
    Moffett JR, Palkovits M, Namboodiri A, Neale JH (1994) Comparative distribution of N-acetlyaspartylglutamate and GAD67 in the cerebellum and precerebellar nuclei of the rat utilizing enhanced carboiimide fixation and immunohistochemistry. J Comp Neurol 347(4):598–618PubMedCrossRefGoogle Scholar
  60. 60.
    Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113(5):472–486CrossRefGoogle Scholar
  61. 61.
    Olney JW, Farber NB (1995) NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacol 13(4):335–345CrossRefGoogle Scholar
  62. 62.
    Palacios JM, Mengod G (1992) Visualization of neurotransmitter receptors and their mRNAs in the human brain. Arzneimittelforschung 42(2A):189–195PubMedGoogle Scholar
  63. 63.
    Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin Heidelberg New YorkGoogle Scholar
  64. 64.
    Philippe A, Martinez M, Bataille-Guillot M, Gillberg C, Rastam M, Sponheim E, Coleman M, Zappella M, Aschauer H, Van Maldergerm LV, Penet C, Feingold J, Brice A, Leboyer M, the Paris Autism Research International Sibpair study. (1999) An autosomal genomic screen for autism. Collaborative linkage study of autism. Am J Hum Genet 68:1514–1520Google Scholar
  65. 65.
    Pierce K, Courchesne E (2001) Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psych 49:655–664CrossRefGoogle Scholar
  66. 66.
    Preece P, Virley DJ, Costandi M, Coombes R, Moss SJ, Mudge AW, Jazin E, Cairns NJ (2003) An optimistic view for quantifying mRNA in post mortem human brain. Mol Brain Res 116:7–16PubMedCrossRefGoogle Scholar
  67. 67.
    Rabionet R, Jaworski JM, Ashley-Koch AE, Martin ER, Sutcliffe JS, Haines JL, Delong GR, Abramson RK, Wright HH, Cuccaro ML, Gilbert JR, Pericak-Vance MA (2004) Analysis of the autism chromosome 2 linkage region: GAD1 and other candidate genes. Neurosci Lett 372:209–214PubMedCrossRefGoogle Scholar
  68. 68.
    Ramnani N (2006) The primate cortico-cerebellar system—anatomy and function. Nat Neurosci Rev 7(7):511–522CrossRefGoogle Scholar
  69. 69.
    Rapin I (1991) Autistic children: diagnosis and clinical feature. Pediatrics 87:751–760PubMedGoogle Scholar
  70. 70.
    Rapin I, Katzman R (1998) Neurobiology of autism. Ann Neurol 43(1):7–14PubMedCrossRefGoogle Scholar
  71. 71.
    Rimvall K, Sheikh SN, Martin DL (1993) Effects of increased γ-aminobutyric acid levels on GAD67 protein and mRNA levels in rat cerebral cortex. J Neurochem 60:714–720PubMedCrossRefGoogle Scholar
  72. 72.
    Rimvall K, Martin DL (1994) The level of GAD67 protein is highly sensitive to small increases in intraneuronal γ-aminobutyric acid levels. J Neurochem 62:1375–1381PubMedCrossRefGoogle Scholar
  73. 73.
    Rinehart NJ, Bradshaw JL, Brereton AV, Tonge BJ (2001) Movement preparation in high functioning autism and Asperger disorder: a serial choice reaction time task involving motor reprogramming. J Autism Dev Disord 31(1):79–88PubMedCrossRefGoogle Scholar
  74. 74.
    Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J, Kalaydjieva L, McCague P, Dimiceli S, Pitts, Nguyen L, Yang J, Harper C, Thorpe D, Vermeer S, Young H, Herbert J, Lin A, Ferguson J, Chiotti C, Wiese-Slater S, Rogers T, Salmon B, Nicholas P, Petersen PB, Pingree C, McMahon W, Wong DL, Cavalli-Sforza LL, Kraemer HC, Myers RM (1999) A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 65(2):493–507PubMedCrossRefGoogle Scholar
  75. 75.
    Riva D, Giorgi (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumors. Brain 123:1051–1061PubMedCrossRefGoogle Scholar
  76. 76.
    Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the cerebellum. Academic, New YorkGoogle Scholar
  77. 77.
    Schmahmann JD, Kiliany RJ, Moore TL, DeMong C, MacMore JP, Moss MB (2004) Cerebellar dentate nucleus lesions impair flexibility but not motor function in monkeys. Soc Neurosci Abstr 34:254–312Google Scholar
  78. 78.
    Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, Simensen RJ, Bishop J, Skinner C, Fender D, Stevensone RE (1998) Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 76:327–336PubMedCrossRefGoogle Scholar
  79. 79.
    Segovia J, Tillakaratne NJ, Whelan K, Tobin AJ, Gale K (1990) Parallel increases in striatal glutamic acid decarboxylase activity and mRNA levels in rats with lesions of the nigrostriatal pathway. Brain Res 529:345–348PubMedCrossRefGoogle Scholar
  80. 80.
    Shao Y, Wolpert CM, Raiford KL, Menold MM, Donnelly SL, Ravan SA, Bass MP, McClain C, Von Wendt L, Vance JM, Abramson RH, Wright HH, Ashley-Koch A, Gilbert JR, DeLong RG, Cuccaro ML, Pericak-Vance MA (2002) Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 114:99–105PubMedCrossRefGoogle Scholar
  81. 81.
    Stuhmer T, Anderson SA, Ekker M, Rubenstein KL (2002) Ectopic expression of the DLX genes induces glutamic acid decarboxylase and DLX expression. Development 129:245–252PubMedGoogle Scholar
  82. 82.
    Soghomonian JJ, Gonzales C, Chesselet MF (1992) Messenger RNAs encoding glutamate-decarboxylases are differentially affected by nigrostriatal lesions in subpopulations of striatal neurons. Brain Res 576(1):68–79PubMedCrossRefGoogle Scholar
  83. 83.
    Soghomonian JJ (1993) Effects of neonatal 6-hydroxydopamine injections on glutamate decarboxylase, preproenkephalin and dopamine D2 receptor mRNAs in the adult rat striatum. Brain Res 621:249–259PubMedCrossRefGoogle Scholar
  84. 84.
    Soghomonian JJ, Pedneault S, Audet G, Parent A (1994) Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates. J Neurosci 14:6256–6265PubMedGoogle Scholar
  85. 85.
    Soghomonian JJ, Laprade N (1997) Glutamate decarboxylase (GAD67 and GAD65) gene expression is increased in a subpopulation of neurons in the putamen of Parkinsonian monkeys. Synapse 27:122–132PubMedCrossRefGoogle Scholar
  86. 86.
    Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19(12):500–505PubMedCrossRefGoogle Scholar
  87. 87.
    Teune TM, Van der Burg J, Van der Moer J, Voodg J, Ruigrok TJ (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141–172PubMedCrossRefGoogle Scholar
  88. 88.
    Torrey FF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psych 57(3):252–260CrossRefGoogle Scholar
  89. 89.
    Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decoarbosylase 67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57(3):237–245PubMedCrossRefGoogle Scholar
  90. 90.
    Walker E, McNicol AM (1992) In situ hybridization demonstrates the stability of mRNA in post mortem rat tissues. J Pathol 168(1):67–73PubMedCrossRefGoogle Scholar
  91. 91.
    Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O’Hearn E, Molliver ME, Aicher SA (2002) Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4 and the cerebellar contribution to post-hypoxic myoclnus. Adv Neurol 89:331–359PubMedGoogle Scholar
  92. 92.
    Whitney ER, Kemper TL, Bauman ML, Blatt GJ (2004) Calcium binding proteins in cerebellar Purkinje cells in autistic cerebellum. Soc Neurosci Abstr 34:116.11Google Scholar
  93. 93.
    Willcutts MD, Griffin WST, Morrison-Bogorad M (1989) Analysis of glutamic acid decarboxylase mRNA levels during cerebellar development in rat. Neurosci Res Commun 6:57–65Google Scholar
  94. 94.
    Willcutts MD, Morrison-Bogorad M (1991) Quantitative in situ hybridization analysis of glutamic acid decarboxylase messenger RNA in developing rat cerebellum. Dev Brain Res 63:253–164CrossRefGoogle Scholar
  95. 95.
    Woo TU, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-d-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61(7):649–657PubMedCrossRefGoogle Scholar
  96. 96.
    Yip J, Marcon R, Kemper TL, Bauman ML, Blatt GJ. (2005): The olivocerebellar projection in autism: using the intermediate filament protein peripherin as a marker for climbing fibers. International Meeting for Autism Res Abstr (IMFAR) 5:49Google Scholar
  97. 97.
    Yip J, Soghomonian JJ, Bauman M, Kemper T, Blatt GJ (2006) Functional status of the cerebellar Purkinje cells in autistic brains. International Meeting for Autism Research (IMFAR) 5:142Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jane Yip
    • 1
  • Jean-Jacques Soghomonian
    • 1
  • Gene J. Blatt
    • 1
    Email author
  1. 1.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA

Personalised recommendations