Acta Neuropathologica

, Volume 112, Issue 5, pp 597–603 | Cite as

Transferrin localizes in Bunina bodies in amyotrophic lateral sclerosis

  • Yuji Mizuno
  • Masakuni Amari
  • Masamitsu Takatama
  • Hitoshi Aizawa
  • Ban Mihara
  • Koichi Okamoto
Original Article


Transferrin, an iron-binding protein, plays an important role in the transport and delivery of circulating ferric iron to the tissues. Amyotrophic lateral sclerosis (ALS) is characterized by the presence of Bunina bodies, skein-like inclusions, Lewy body-like inclusions/round inclusions, and basophilic inclusions in the remaining anterior horn cells in the spinal cord. We examined transverse paraffin sections of lumbar spinal cords from 12 ALS cases including two ALS with dementia and two ALS with basophilic inclusions, using antibodies to human transferrin. The results demonstrated that transferrin localized in Bunina bodies and some of the basophilic inclusions. In contrast, skein-like inclusions and Lewy body-like inclusions or round inclusions did not show obviously detectable transferrin immunoreactivities. Our findings suggest that although the mechanisms underlying transferrin accumulation in Bunina bodies and basophilic inclusions are unknown, transferrin could be involved in forming these inclusions. Furthermore, following cystatin C, transferrin is the second protein that localizes in the Bunina bodies.


Amyotrophic lateral sclerosis Basophilic inclusions Bunina bodies Cystatin C Transferrin 



This work was supported by a grant from the Ministry of Health, Labor and Welfare of Japan to K. Okamoto.


  1. 1.
    Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884PubMedGoogle Scholar
  2. 2.
    Bloch B, Popovici T, Levin MJ, Tuil D, Kahn A (1985) Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry. Proc Natl Acad Sci USA 82:6706–6710PubMedCrossRefGoogle Scholar
  3. 3.
    Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor-mediated transcytosis of transferrin across the blood–brain barrier. J Neurosci Res 18:299–304PubMedCrossRefGoogle Scholar
  4. 4.
    Fujita Y, Okamoto K, Sakurai A, Kusaka H, Aizawa H, Mihara B, Gonatas NK (2002) The Golgi apparatus is fragmented in spinal cord motor neurons of amyotrophic lateral sclerosis with basophilic inclusions. Acta Neuropathol (Berl) 103:243–247CrossRefGoogle Scholar
  5. 5.
    Hart MN, Cancilla PA, Frommes S, Hirano A (1977) Anterior horn cell degeneration and Bunina-type inclusions associated with dementia. Acta Neuropathol (Berl) 38:225–228CrossRefGoogle Scholar
  6. 6.
    Kato T, Katagiri T, Hirano A, Kawanami T, Sasaki H (1989) Lewy body-like hyaline inclusions in sporadic motor neuron disease are ubiquitinated. Acta Neuropathol (Berl) 77:391–396CrossRefGoogle Scholar
  7. 7.
    Kato S, Saito M, Hirano A, Ohama E (1999) Recent advances in research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 gene mutations: neuronal Lewy body-like hyaline inclusions and astrocytic hyaline inclusions. Histol Histopathol 14:973–989PubMedGoogle Scholar
  8. 8.
    Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28:228–237PubMedCrossRefGoogle Scholar
  9. 9.
    Leigh PN, Anderton BH, Dodson A, Gallo JM, Swash M, Power DM (1988) Ubiquitin deposits in anterior horn cells in motor neuron disease. Neurosci Lett 93:197–203PubMedCrossRefGoogle Scholar
  10. 10.
    Levenson CW, Tassabehji NM (2004) Iron and ageing: an introduction to iron regulatory mechanisms. Ageing Res Rev 3:251–263PubMedCrossRefGoogle Scholar
  11. 11.
    Liu HM, Atack JR, Rapoport SI (1989) Immunohistochemical localization of intracellular plasma proteins in the human central nervous system. Acta Neuropathol (Berl) 78:16–21CrossRefGoogle Scholar
  12. 12.
    Matsumoto S, Kusaka H, Ito H, Shibata N, Asayama T, Imai T (1996) Sporadic amyotrophic lateral sclerosis with dementia and Cu/Zn superoxide dismutase-positive Lewy body-like inclusions. Clin Neuropathol 15:41–46PubMedGoogle Scholar
  13. 13.
    Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006) Immunoreactivities of p62, a ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci (in press)Google Scholar
  14. 14.
    Mizusawa H, Hirano A, Yen SHC (1991) Anterior horn cell inclusions in familial amyotrophic lateral sclerosis contain ubiqutin and phosphorylated neurofilament epitopes. Neuropathology 11:11–20Google Scholar
  15. 15.
    Moos T (1995) Age-dependent uptake and retrograde axonal transport of exogenous albumin and transferrin in rat motor neurons. Brain Res 672:14–23PubMedCrossRefGoogle Scholar
  16. 16.
    Morris CM, Candy JM, Bloxham CA, Edwardson JA (1992) Immunocytochemical localisation of transferrin in the human brain. Acta Anat (Basel) 143:14–18Google Scholar
  17. 17.
    Nagai A, Murakawa Y, Terashima M, Shimode K, Umegae N, Takeuchi H, Kobayashi S (2000) Cystatin C and cathepsin B in CSF from patients with inflammatory neurologic diseases. Neurology 55:1828–1832PubMedGoogle Scholar
  18. 18.
    Nagai A, Terashima M, Harada T, Shimode K, Takeuchi H, Murakawa Y, Nagasaki M, Nakano A, Kobayashi S (2003) Cathepsin B and H activities and cystatin C concentrations in cerebrospinal fluid from patients with leptomeningeal metastasis. Clin Chim Acta 329:53–60PubMedCrossRefGoogle Scholar
  19. 19.
    Nakano I, Hashizume Y, Tomonaga T (1990) Bunina bodies in neurons of the medullary reticular formation in a case of amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 79:689–691CrossRefGoogle Scholar
  20. 20.
    Nakano T, Nakaso K, Nakashima K, Ohama E (2004) Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol (Berl) 107:359–364CrossRefGoogle Scholar
  21. 21.
    Okamoto K (1993) Bunina bodies in amyotrophic lateral sclerosis. Neuropathology 13:193–199Google Scholar
  22. 22.
    Okamoto K, Morimatsu M, Hirai S, Ishida Y (1980) Intracytoplasmic inclusions (Bunina bodies) in amyotrophic lateral sclerosis. Acta Pathol Jpn 30:591–597PubMedGoogle Scholar
  23. 23.
    Okamoto K, Hirai S, Amari M, Watanabe M, Sakurai A (1993) Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum. Neurosci Lett 162:125–128PubMedCrossRefGoogle Scholar
  24. 24.
    Piubelli C, Fiorini M, Zanusso G, Milli A, Fasoli E, Monaco S, Righetti PG (2006) Searching for markers of Creutzfeldt–Jakob disease in cerebrospinal fluid by two-dimensional mapping. Proteomics 6:S256–S261PubMedCrossRefGoogle Scholar
  25. 25.
    Reed CH (2000) Diagnostic applications of cystatin C. Br J Biomed Sci 57:323–329PubMedCrossRefGoogle Scholar
  26. 26.
    Sparrow JR (1981) Immunocytochemical localization of plasma proteins in neuronal perikarya. Brain Res 212:159–163PubMedCrossRefGoogle Scholar
  27. 27.
    Stumptner C, Heid H, Fuchsbichler A, Hauser H, Mischinger HJ, Zatloukal K, Denk H (1999) Analysis of intracytoplasmic hyaline bodies in a hepatocellular carcinoma. Demonstration of p62 as major constituent. Am J Pathol 154:1701–1710PubMedGoogle Scholar
  28. 28.
    Vannier-Santos MA, Martiny A, Lins U, Urbina JA, Borges VM, de Souza W (1999) Impairment of sterol biosynthesis leads to phosphorus and calcium accumulation in Leishmania acidocalcisomes. Microbiology 145:3213–3220PubMedGoogle Scholar
  29. 29.
    Yu HL, Chertkow HM, Bergman H, Schipper HM (2003) Aberrant profiles of native and oxidized glycoproteins in Alzheimer plasma. Proteomics 3:2240–2248PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Yuji Mizuno
    • 1
  • Masakuni Amari
    • 2
  • Masamitsu Takatama
    • 2
  • Hitoshi Aizawa
    • 3
  • Ban Mihara
    • 4
  • Koichi Okamoto
    • 1
  1. 1.Department of NeurologyGunma University Graduate School of MedicineGunmaJapan
  2. 2.Department of Internal MedicineGeriatrics Research Institute and HospitalGunmaJapan
  3. 3.First Department of Internal MedicineAsahikawa Medical CollegeAsahikawaJapan
  4. 4.Institute of Brain and Blood VesselsMihara Memorial HospitalGunmaJapan

Personalised recommendations