Acta Neuropathologica

, Volume 112, Issue 4, pp 439–449

No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain

  • Martin Ingelsson
  • Karunya Ramasamy
  • Ippolita Cantuti-Castelvetri
  • Lena Skoglund
  • Toshifumi Matsui
  • Jennifer Orne
  • Hasimoto Kowa
  • Susan Raju
  • Charles R. Vanderburg
  • Jean C. Augustinack
  • Rohan de Silva
  • Andrew J. Lees
  • Lars Lannfelt
  • John H. Growdon
  • Matthew P. Frosch
  • David G. Standaert
  • Michael C. Irizarry
  • Bradley T. Hyman
Original Paper

Abstract

Defective splicing of tau mRNA, promoting a shift between tau isoforms with (4R tau) and without (3R tau) exon 10, is believed to be a pathological consequence of certain tau mutations causing frontotemporal dementia. By assessing protein and mRNA levels of 4R tau and 3R tau in 27 AD and 20 control temporal cortex, we investigated whether altered tau splicing is a feature also in Alzheimer’s disease (AD). However, apart from an expected increase of sarcosyl-insoluble tau in AD, there were no significant differences between the groups. Next, by laser-capture microscopy and quantitative PCR, we separately analyzed CA1 hippocampal neurons with and without neurofibrillary pathology from six of the AD and seven of the control brains. No statistically significant differences in 4R tau/3R tau mRNA were found between the different subgroups. Moreover, we confirmed the absence of significant ratio differences in a second data set with laser-captured entorhinal cortex neurons from four AD and four control brains. Finally, the 4R tau/3R tau ratio in CA1 neurons was roughly half of the ratio in temporal cortex, indicating region-specific differences in tau mRNA splicing. In conclusion, this study indicated region-specific and possibly cell-type-specific tau splicing but did not lend any support to overt changes in alternative splicing of tau exon 10 being an underlying factor in AD pathogenesis.

Keywords

Brain Neurodegeneration Alzheimer’s disease Tau Alternative splicing 

References

  1. 1.
    Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590PubMedCrossRefGoogle Scholar
  2. 2.
    Augustinack J, Schneider A, Mandelkow E, Hyman B (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35PubMedCrossRefGoogle Scholar
  3. 3.
    Boutajangout A, Boom A, Leroy K, Brion JP (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease. FEBS Lett 576:183–189PubMedCrossRefGoogle Scholar
  4. 4.
    Buée L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9:681–693PubMedCrossRefGoogle Scholar
  5. 5.
    Chambers CB, Lee JM, Troncoso JC, Reich S, Muma NA (1999) Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer’s disease. Ann Neurol 46:325–332PubMedCrossRefGoogle Scholar
  6. 6.
    Connell JW, Rodriguez-Martin T, Gibb GM, Kahn NM, Grierson AJ, Hanger DP, Revesz T, Lantos PL, Anderton BH, Gallo JM (2005) Quantitative analysis of tau isoform transcripts in sporadic tauopathies. Brain Res Mol Brain Res 137:104–109PubMedCrossRefGoogle Scholar
  7. 7.
    de Silva R, Lashley T, Gibb GM, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropath Appl Neurobiol 29:288–302CrossRefGoogle Scholar
  8. 8.
    Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168PubMedCrossRefGoogle Scholar
  9. 9.
    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526PubMedCrossRefGoogle Scholar
  10. 10.
    Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399PubMedGoogle Scholar
  11. 11.
    Gomez-Isla T, Hollister R, West H, Mui S, Growdon J, Petersen R, Parisi J, Hyman B (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24PubMedCrossRefGoogle Scholar
  12. 12.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917PubMedCrossRefGoogle Scholar
  13. 13.
    Hasegawa M, Smith MJ, Iijima M, Tabira T, Goedert M (1999) FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett 443:93–96PubMedCrossRefGoogle Scholar
  14. 14.
    Herrmann M, Golombowski S, Krauchi K, Frey P, Mourton-Gilles C, Hulette C, Rosenberg C, Muller-Spahn F, Hock C (1999) ELISA-quantitation of phosphorylated tau protein in the Alzheimer’s disease brain. Eur Neurol 42:205–210PubMedCrossRefGoogle Scholar
  15. 15.
    Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917PubMedCrossRefGoogle Scholar
  16. 16.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705PubMedCrossRefGoogle Scholar
  17. 17.
    Hyman B, Trojanowski J (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropath Exp Neurol 56:1095–1097PubMedCrossRefGoogle Scholar
  18. 18.
    Hyman BT, Augustinack JC, Ingelsson M (2005) Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim Biophys Acta 1739:150–157PubMedGoogle Scholar
  19. 19.
    Ingelsson M, Froelich Fabre S, Volkmann I, Sundström E, Näslund J, Lannfelt L, Bogdanovic N (2001) Three microtubule-binding repeat tau (3R tau) are the major tau isoforms in Alzheimer neuropathology. In: The 35th conference for the society for Neuroscience, San DiegoGoogle Scholar
  20. 20.
    Ingelsson M, Fukumoto H, Newell K, Growdon JH, Hedley-Whyte TE, Albert MS, Frosch MP, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis and tangle formation in AD brain. Neurology 62:925–931PubMedGoogle Scholar
  21. 21.
    Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156:333–344PubMedCrossRefGoogle Scholar
  22. 22.
    Liu WK, Le T, Adamson J (2001) Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy. Ann Neurol 50:494–502PubMedCrossRefGoogle Scholar
  23. 23.
    Mandelkow E-M, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085PubMedCrossRefGoogle Scholar
  24. 24.
    McKhann G, Drachman D, Folstein M (1984) Clinical diagnosis of Alzheimer’s disease: report of NINCDS-ADRDA Work Group under the auspices of department of health and human services task forces on Alzheimer’s disease. Neurology 34:939–944PubMedGoogle Scholar
  25. 25.
    Mirra SS, Heyman A, McKeel D (1991) The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  26. 26.
    Togo T, Akiyama H, Iseki E, Uchikado H, Kondo H, Ikeda K, Tsuchiya K, de Silva R, Lees A, Kosaka K (2005) Immunohistochemical study of tau accumulation in early stages of Alzheimer-type neurofibrillary lesions. Acta Neuropath 107:504–508CrossRefGoogle Scholar
  27. 27.
    Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A, Martin J-J, Cras P (1993) Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 61:1828–1834PubMedGoogle Scholar
  28. 28.
    Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjogren M, Andreasen N, Blennow K (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Martin Ingelsson
    • 1
    • 2
  • Karunya Ramasamy
    • 1
  • Ippolita Cantuti-Castelvetri
    • 1
  • Lena Skoglund
    • 2
  • Toshifumi Matsui
    • 1
  • Jennifer Orne
    • 1
  • Hasimoto Kowa
    • 1
  • Susan Raju
    • 1
  • Charles R. Vanderburg
    • 1
  • Jean C. Augustinack
    • 1
  • Rohan de Silva
    • 3
  • Andrew J. Lees
    • 3
  • Lars Lannfelt
    • 2
  • John H. Growdon
    • 1
  • Matthew P. Frosch
    • 1
  • David G. Standaert
    • 1
  • Michael C. Irizarry
    • 1
  • Bradley T. Hyman
    • 1
  1. 1.Harvard Medical SchoolMassachusetts General HospitalCharlestownUSA
  2. 2.Department of Public Health/Molecular GeriatricsUppsala UniversityUppsalaSweden
  3. 3.Reta Lila Weston Institute of Neurological StudiesUniversity College LondonLondonUK

Personalised recommendations