Acta Neuropathologica

, Volume 112, Issue 3, pp 305–316 | Cite as

Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization

  • Johann Steiner
  • Christian Mawrin
  • Anke Ziegeler
  • Hendrik Bielau
  • Oliver Ullrich
  • Hans-Gert Bernstein
  • Bernhard Bogerts
Original Paper

Abstract

Immunological alterations have been demonstrated in peripheral blood and cerebrospinal fluid of patients with schizophrenia, while previous postmortem studies have provided an inconsistent picture as to the role of microglia in the context of schizophrenia. Microglial activation is a sensitive indicator of changes in the CNS microenvironment, such as inflammatory and neurodegenerative processes. The aim of the present postmortem study was to examine HLA class II (HLA-DR) expression on microglia in brain regions which are particularly relevant for schizophrenia, with regard to hemispheric lateralization. Dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), hippocampus and mediodorsal thalamus (MD) were studied in 16 cases with schizophrenia and 16 control subjects. Immunostaining was found in all brain regions and was not restricted to macrophage-like ameboid cells, but also appeared in ramified cells. Region-specific HLA-DR-positive cell density was not significantly different between cases with schizophrenia and controls. However, ameboid microglial cells were lateralized towards the right hemisphere in healthy subjects but not in the schizophrenia group (P=0.01). Postmortem interval correlated with ramified cell numbers in ACC/DLPFC (P=0.01/0.04) and ameboid cell density in hippocampus (P=0.03). Age, gender, duration of disease, medication dosage, storage delay and whole brain volume had no effect. Single case analysis revealed highly elevated microglial cell numbers in ACC and MD of two schizophrenic patients who had committed suicide during acute psychosis. In conclusion, the present data suggest the absence of microgliosis but decreased cerebral lateralization of ameboid microglia in schizophrenia.

Keywords

Schizophrenia Microglia HLA-DR Lateralization 

Notes

Acknowledgments

The Saxony-Anhalt Ministry of Research (XN3594O/0405M, Signaltransduzierende Netzwerke N2), German Ministry of Research (BMBF-NBL3 01ZZ0107, BrainNet) and Stanley Foundation supported the present study. We thank Dr. Alan Richardson-Klavehn for checking the English language of the manuscript. Gabriele Meyer-Lotz and Sieglinde Funke provided excellent technical assistance.

References

  1. 1.
    Adams TE, Bodmer JG, Bodmer WF (1983) Production and characterization of monoclonal antibodies recognizing the alpha-chain subunits of human ia alloantigens. Immunology 50:613–624PubMedGoogle Scholar
  2. 2.
    Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Quirion R, Boksa P (1993) Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem 61:1284–1290PubMedCrossRefGoogle Scholar
  3. 3.
    Arnold SE, Trojanowski JQ, Gur RE, Blackwell P, Han LY, Choi C (1998) Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 55:225–232PubMedCrossRefGoogle Scholar
  4. 4.
    Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271:126–128PubMedCrossRefGoogle Scholar
  5. 5.
    Bo L, Mork S, Kong PA, Nyland H, Pardo CA, Trapp BD (1994) Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol 51:135–146PubMedCrossRefGoogle Scholar
  6. 6.
    Borda T, Perez Rivera R, Joensen L, Gomez RM, Sterin-Borda L (2002) Antibodies against cerebral M1 cholinergic muscarinic receptor from schizophrenic patients: molecular interaction. J Immunol 168:3667–3674PubMedGoogle Scholar
  7. 7.
    Damadzic R, Bigelow LB, Krimer LS, Goldenson DA, Saunders RC, Kleinman JE, Herman MM (2001) A quantitative immunohistochemical study of astrocytes in the entorhinal cortex in schizophrenia, bipolar disorder and major depression: absence of significant astrocytosis. Brain Res Bull 55:611–618PubMedCrossRefGoogle Scholar
  8. 8.
    DeLisi LE (1999) Regional brain volume change over the life-time course of schizophrenia. J Psychiatr Res 33:535–541PubMedCrossRefGoogle Scholar
  9. 9.
    Dollfus S, Razafimandimby A, Delamillieure P, Brazo P, Joliot M, Mazoyer B, Tzourio-Mazoyer N (2005) Atypical hemispheric specialization for language in right-handed schizophrenia patients. Biol Psychiatry 57:1020–1028PubMedCrossRefGoogle Scholar
  10. 10.
    Epenetos AA, Bobrow LG, Adams TE, Collins CM, Isaacson PG, Bodmer WF (1985) A monoclonal antibody that detects HLA-D region antigen in routinely fixed, wax embedded sections of normal and neoplastic lymphoid tissues. J Clin Pathol 38:12–17PubMedCrossRefGoogle Scholar
  11. 11.
    Falkai P, Honer WG, David S, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brains of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25:48–53PubMedCrossRefGoogle Scholar
  12. 12.
    Falke E, Han LY, Arnold SE (2000) Absence of neurodegeneration in the thalamus and caudate of elderly patients with schizophrenia. Psychiatry Res 93:103–110PubMedCrossRefGoogle Scholar
  13. 13.
    Gorwood P, Pouchot J, Vinceneux P, Puechal X, Flipo RM, De Bandt M, Ades J (2004) Rheumatoid arthritis and schizophrenia: a negative association at a dimensional level. Schizophr Res 66:21–29PubMedCrossRefGoogle Scholar
  14. 14.
    Graeber MB, Streit WJ (1990) Perivascular microglia defined. Trends Neurosci 13:366PubMedCrossRefGoogle Scholar
  15. 15.
    Gruneberg U, Rich T, Roucard C, Marieke van Ham S, Charron D, Trowsdale J (1997) Two widely used anti-DR alpha monoclonal antibodies bind to an intracellular C-terminal epitope. Hum Immunol 53:34–38PubMedCrossRefGoogle Scholar
  16. 16.
    Heim S, Kissler J, Elbert T, Rockstroh B (2004) Cerebral lateralization in schizophrenia and dyslexia: neuromagnetic responses to auditory stimuli. Neuropsychologia 42:692–697PubMedCrossRefGoogle Scholar
  17. 17.
    Heizmann CW (2004) S100B protein in clinical diagnostics: assay specificity. Clin Chem 50:249–251PubMedCrossRefGoogle Scholar
  18. 18.
    Henneberg AE, Horter S, Ruffert S (1994) Increased prevalence of antibrain antibodies in the sera from schizophrenic patients. Schizophr Res 14:15–22PubMedCrossRefGoogle Scholar
  19. 19.
    Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev 14:1–34PubMedCrossRefGoogle Scholar
  20. 20.
    Hirsch S (2004) Clinical changes measured by [11C](R)-PK11195 PET in patients with psychosis and cognitive decline are associated with impaired event related potential mismatch negativity (abstract from the 12th biennial winter workshop on schizophrenia, Davos, Switzerland). Schizophr Res 67:103Google Scholar
  21. 21.
    Kowalski J, Labuzek K, Herman ZS (2003) Flupentixol and trifluperidol reduce secretion of tumor necrosis factor-alpha and nitric oxide by rat microglial cells. Neurochem Int 43:173–178PubMedCrossRefGoogle Scholar
  22. 22.
    Kreczmanski P, Schmidt-Kastner R, Heinsen H, Steinbusch HW, Hof PR, Schmitz C (2005) Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol (Berl) 109:510–518CrossRefGoogle Scholar
  23. 23.
    Kreutzberg GW (1995) Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 45:357–360PubMedGoogle Scholar
  24. 24.
    Kurumaji A, Wakai T, Toru M (1997) Decreases in peripheral-type benzodiazepine receptors in postmortem brains of chronic schizophrenics. J Neural Transm 104:1361–1370PubMedCrossRefGoogle Scholar
  25. 25.
    Labuzek K, Kowalski J, Gabryel B, Herman ZS (2005) Chlorpromazine and loxapine reduce interleukin-1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 15:23–30PubMedCrossRefGoogle Scholar
  26. 26.
    Mai JK, Assheuer J, Paxinos G (2003) Atlas of the human brain. Academic, San DiegoGoogle Scholar
  27. 27.
    Mattiace LA, Davies P, Dickson DW (1990) Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol 136:1101–1114PubMedGoogle Scholar
  28. 28.
    McGeer PL, Walker DG, Akiyama H, Yasuhara O, McGeer EG (1994) Involvement of microglia in Alzheimer’s disease. Neuropathol Appl Neurobiol 20:191–192PubMedGoogle Scholar
  29. 29.
    Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol (Berl) 101:249–255Google Scholar
  30. 30.
    Nikkila HV, Muller K, Ahokas A, Miettinen K, Rimon R, Andersson LC (1999) Accumulation of macrophages in the CSF of schizophrenic patients during acute psychotic episodes. Am J Psychiatry 156:1725–1729PubMedGoogle Scholar
  31. 31.
    Nunes SO, Borelli SD, Matsuo T, Watanabe MA, Itano EN (2005) The association of the HLA in patients with schizophrenia, schizoaffective disorder, and in their biological relatives. Schizophr Res 76:195–198PubMedCrossRefGoogle Scholar
  32. 32.
    Pakkenberg B (1993) Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 34:768–772PubMedCrossRefGoogle Scholar
  33. 33.
    Paulus W, Bancher C, Jellinger K (1993) Microglial reaction in Pick’s disease. Neurosci Lett 161:89–92PubMedCrossRefGoogle Scholar
  34. 34.
    Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036PubMedCrossRefGoogle Scholar
  35. 35.
    Radewicz K, Garey LJ, Gentleman SM, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150PubMedGoogle Scholar
  36. 36.
    Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C (2002) Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:127–138PubMedCrossRefGoogle Scholar
  37. 37.
    Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349PubMedCrossRefGoogle Scholar
  38. 38.
    Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, Rudolf S, Wandinger KP, Kirchner H (2001) Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry 6:445–449PubMedCrossRefGoogle Scholar
  39. 39.
    Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Modder U, Jander S (2004) In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127:1670–1677PubMedCrossRefGoogle Scholar
  40. 40.
    Schmitt AB, Brook GA, Buss A, Nacimiento W, Noth J, Kreutzberg GW (1998) Dynamics of microglial activation in the spinal cord after cerebral infarction are revealed by expression of MHC class II antigen. Neuropathol Appl Neurobiol 24:167–176PubMedCrossRefGoogle Scholar
  41. 41.
    Schuld A, Hinze-Selch D, Pollmaecher T (2004) Cytokine network in patients with schizophrenia and its significance for the pathophysiology of the illness. Nervenarzt 75:215–226PubMedCrossRefGoogle Scholar
  42. 42.
    Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52PubMedCrossRefGoogle Scholar
  43. 43.
    Sperner-Unterweger B, Whitworth A, Kemmler G, Hilbe W, Thaler J, Weiss G, Fleischhacker WW (1999) T-cell subsets in schizophrenia: a comparison between drug-naive first episode patients and chronic schizophrenic patients. Schizophr Res 38:61–70PubMedCrossRefGoogle Scholar
  44. 44.
    Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, Uema T, Takeda M, Amino N (2003) Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol 141:155–164PubMedCrossRefGoogle Scholar
  45. 45.
    Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (2000) Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res 885:117–121PubMedCrossRefGoogle Scholar
  46. 46.
    van Berckel B, Boellaard R, Caspers E, Cahn W, Lammertsma A, Kahn R (2005) Microglia activation in schizophrenia: an (R)-[11C]-PK11195 positron emission tomography study (abstract from the 2005 international congress on schizophrenia research, Savannah, Georgia). Schizophr Bull 31:448Google Scholar
  47. 47.
    Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Bayer TA, Bogerts B, Honer WG, Falkai P (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157:34–39PubMedGoogle Scholar
  48. 48.
    Wagner-Jauregg J (1887) Über die Einwirkung fieberhafter Erkrankungen auf Psychosen. Allg Z Psychiatr 27:93–131Google Scholar
  49. 49.
    Wierzba-Bobrowicz T, Lewandowska E, Kosno-Kruszewska E, Lechowicz W, Pasennik E, Schmidt-Sidor B (2004) Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 42:157–165PubMedGoogle Scholar
  50. 50.
    Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E (2005) Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 43:81–89PubMedGoogle Scholar
  51. 51.
    Wiesmann M, Wandinger KP, Missler U, Eckhoff D, Rothermundt M, Arolt V, Kirchner H (1999) Elevated plasma levels of S-100b protein in schizophrenic patients. Biol Psychiatry 45:1508–1511PubMedCrossRefGoogle Scholar
  52. 52.
    Wright P, Nimgaonkar VL, Donaldson PT, Murray RM (2001) Schizophrenia and HLA: a review. Schizophr Res 47:1–12PubMedCrossRefGoogle Scholar
  53. 53.
    Yolken RH, Torrey EF (1995) Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev 8:131–145PubMedGoogle Scholar
  54. 54.
    Zalcman S, Green-Johnson JM, Murray L, Nance DM, Dyck D, Anisman H, Greenberg AH (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, −2 and −6. Brain Res 643:40–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Johann Steiner
    • 1
  • Christian Mawrin
    • 2
  • Anke Ziegeler
    • 1
  • Hendrik Bielau
    • 1
  • Oliver Ullrich
    • 3
  • Hans-Gert Bernstein
    • 1
  • Bernhard Bogerts
    • 1
  1. 1.Department of PsychiatryUniversity of MagdeburgMagdeburgGermany
  2. 2.Institute of NeuropathologyUniversity of MagdeburgMagdeburgGermany
  3. 3.Institute of ImmunologyUniversity of MagdeburgMagdeburgGermany

Personalised recommendations