Acta Neuropathologica

, Volume 112, Issue 2, pp 195–204

Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis

  • Naoyuki Tanuma
  • Hiroshi Sakuma
  • Atsushi Sasaki
  • Yoh Matsumoto
Original Paper

Abstract

The pathological hallmarks of secondary progressive (SP) multiple sclerosis (MS) include slowly expanding demyelination and axonal damage with less inflammation. To elucidate the pathomechanisms of secondary progressive (SP) multiple sclerosis (MS), we have investigated the expression of chemokines, chemokine receptors, matrix metalloproteinase-9 (MMP-9) and immunoglobulins in the demyelinating plaques. Immunohistochemical analysis revealed that numerous hypertrophic astrocytes were observed at the rim, but not in the center, of the chronic active lesions. Microglia/macrophages phagocytosing myelin debris were also found at the lesion border. In contrast, T cell infiltration was minimal in these plaques. Characteristically, at the rim of the lesions, there were abundant immunoreactivities for monocyte chemoattractant protein-1 (MCP-1)/CCL2 and interferon-γ inducible protein-10 (IP-10)/CXCL10 and their receptors, CCR2 and CXCR3, while these immunoreactivities were weak in the center, thus forming a chemokine gradient. Double immunofluorescense staining demonstrated that cellular sources of MCP-1/CCL2 and IP-10/CXCL10 were hypertrophic astrocytes and that both astrocytes and microglia/macrophages expressed CCR2 and CXCR3. MMP-9 was also present at the rim of the lesions. These results suggest that MCP-1/CCL2 and IP-10/CXCL10 produced by astrocytes may activate astrocytes in an autocrine or paracrine manner and direct reactive gliosis followed by migration and activation of microglia/macrophages as effector cells in demyelinating lesions. Targeting chemokines in SPMS may therefore be a powerful therapeutic approach to inhibit lesional expansion.

Keywords

Multiple sclerosis Progression Immunohistochemistry Chemokine 

References

  1. 1.
    Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463PubMedGoogle Scholar
  2. 2.
    Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 96:6873–6878CrossRefPubMedGoogle Scholar
  3. 3.
    Bitsch A, da Costa C, Bunkowski S, Weber F, Rieckmann P, Bruck W (1998) Identification of macrophage populations expressing tumor necrosis factor-alpha mRNA in acute multiple sclerosis. Acta Neuropathol (Berl) 95:373–377CrossRefGoogle Scholar
  4. 4.
    Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–1183CrossRefPubMedGoogle Scholar
  5. 5.
    Bjartmar C, Kinkel RP, Kidd G, Rudick RA, Trapp BD (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57:1248–1252PubMedGoogle Scholar
  6. 6.
    Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201:223–226CrossRefPubMedGoogle Scholar
  7. 7.
    Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses and progression of disability in multiple sclerosis. N Engl J Med 343:1430–1438CrossRefPubMedGoogle Scholar
  8. 8.
    Cossins JA, Clements JM, Ford J, Miller KM, Pigott R, Vos W, Van der Valk P, De Groot CJ (1997) Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta Neuropathol (Berl) 94:590–598CrossRefGoogle Scholar
  9. 9.
    Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J (1996) The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 55:1194–1204PubMedCrossRefGoogle Scholar
  10. 10.
    De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F, van der Valk P (2001) Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124:1635–1645CrossRefPubMedGoogle Scholar
  11. 11.
    DeLuca GC, Ebers GC, Esiri MM (2004) Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain 127:1009–1018CrossRefPubMedGoogle Scholar
  12. 12.
    Diaz-Sanchez M, Williams K, Deluca GC, Esiri MM (2006) Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol (Berl) 111:289–299CrossRefGoogle Scholar
  13. 13.
    Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175CrossRefPubMedGoogle Scholar
  14. 14.
    Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235CrossRefPubMedGoogle Scholar
  15. 15.
    Kivisakk P, Trebst C, Liu Z, Tucky BH, Sorensen TL, Rudick RA, Mack M, Ransohoff RM (2002) T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clin Exp Immunol 129:510–518CrossRefPubMedGoogle Scholar
  16. 16.
    Koeberle PD, Ball AK (1999) Nitric oxide synthase inhibition delays axonal degeneration and promotes the survival of axotomized retinal ganglion cells. Exp Neurol 158:366–381CrossRefPubMedGoogle Scholar
  17. 17.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212CrossRefPubMedGoogle Scholar
  18. 18.
    Lalive PH, Menge T, Delarasse C, Della Gaspera B, Pham-Dinh D, Villoslada P, von Budingen HC, Genain CP (2006) Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci USA 103:2280–2285CrossRefPubMedGoogle Scholar
  19. 19.
    Lassmann H, Raine CS, Antel J, Prineas JW (1998) Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86:213–217CrossRefPubMedGoogle Scholar
  20. 20.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717CrossRefPubMedGoogle Scholar
  21. 21.
    Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445CrossRefPubMedGoogle Scholar
  22. 22.
    Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300–309PubMedCrossRefGoogle Scholar
  23. 23.
    Matsumoto Y, Fujiwara M (1987) The immunopathology of adoptively transferred experimental allergic encephalomyelitis (EAE) in Lewis rats. Part 1. Immunohistochemical examination of developing lesion of EAE. J Neurol Sci 77:35–47CrossRefPubMedGoogle Scholar
  24. 24.
    Matsumoto Y, Tsukada Y, Miyakoshi A, Sakuma H, Kohyama K (2004) C protein-induced myocarditis and subsequent dilated cardiomyopathy: rescue from death and prevention of dilated cardiomyopathy by chemokine receptor DNA therapy. J Immunol 173:3535–3541PubMedGoogle Scholar
  25. 25.
    Matsumoto Y, Sakuma H, Miyakoshi A, Tsukada Y, Kohyama K, Park IK, Tanuma N (2005) Characterization of relapsing autoimmune encephalomyelitis and its treatment with decoy chemokine receptor genes. J Neuroimmunol 170:49–61CrossRefPubMedGoogle Scholar
  26. 26.
    McManus CM, Brosnan CF, Berman JW (1998) Cytokine induction of MIP-1 alpha and MIP-1 beta in human fetal microglia. J Immunol 160:1449–1455PubMedGoogle Scholar
  27. 27.
    Newman TA, Woolley ST, Hughes PM, Sibson NR, Anthony DC, Perry VH (2001) T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases. Brain 124:2203–2214CrossRefPubMedGoogle Scholar
  28. 28.
    Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952CrossRefPubMedGoogle Scholar
  29. 29.
    O’Connor KC, Appel H, Bregoli L, Call ME, Catz I, Chan JA, Moore NH, Warren KG, Wong SJ, Hafler DA, Wucherpfennig KW (2005) Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J Immunol 175:1974–1982PubMedGoogle Scholar
  30. 30.
    Ohmori K, Hong Y, Fujiwara M, Matsumoto Y (1992) In situ demonstration of proliferating cells in the rat central nervous system during experimental autoimmune encephalomyelitis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Lab Invest 66:54–62PubMedGoogle Scholar
  31. 31.
    Omari KM, John GR, Sealfon SC, Raine CS (2005) CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis. Brain 128:1003–1015CrossRefPubMedGoogle Scholar
  32. 32.
    Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B, Morgan BP (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657CrossRefPubMedGoogle Scholar
  33. 33.
    Raine CS, Cannella B, Hauser SL, Genain CP (1999) Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 46:144–160CrossRefPubMedGoogle Scholar
  34. 34.
    Rosenberg GA, Dencoff JE, Correa N, Jr., Reiners M, Ford CC (1996) Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood–brain barrier injury. Neurology 46:1626–1632PubMedGoogle Scholar
  35. 35.
    Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249CrossRefPubMedGoogle Scholar
  36. 36.
    Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (2000) Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 26:133–142CrossRefPubMedGoogle Scholar
  37. 37.
    Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815PubMedCrossRefGoogle Scholar
  38. 38.
    Sorensen TL, Trebst C, Kivisakk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM, Sellebjerg F (2002) Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol 127:59–68CrossRefPubMedGoogle Scholar
  39. 39.
    Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2:762–764CrossRefPubMedGoogle Scholar
  40. 40.
    Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285CrossRefPubMedGoogle Scholar
  41. 41.
    Trebst C, Staugaitis SM, Tucky B, Wei T, Suzuki K, Aldape KD, Pardo CA, Troncoso J, Lassmann H, Ransohoff RM (2003) Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system (CNS). Neuropathol Appl Neurobiol 29:584–595CrossRefPubMedGoogle Scholar
  42. 42.
    Van Der Voorn P, Tekstra J, Beelen RH, Tensen CP, Van Der Valk P, De Groot CJ (1999) Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol 154:45–51PubMedGoogle Scholar
  43. 43.
    Vos CM, van Haastert ES, de Groot CJ, van der Valk P, de Vries HE (2003) Matrix metalloproteinase-12 is expressed in phagocytotic macrophages in active multiple sclerosis lesions. J Neuroimmunol 138:106–114CrossRefPubMedGoogle Scholar
  44. 44.
    Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R (2003) Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol 144:139–142CrossRefPubMedGoogle Scholar
  45. 45.
    Wu YP, Proia RL (2004) Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc Natl Acad Sci USA 101:8425–8430CrossRefPubMedGoogle Scholar
  46. 46.
    Wujek JR, Bjartmar C, Richer E, Ransohoff RM, Yu M, Tuohy VK, Trapp BD (2002) Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J Neuropathol Exp Neurol 61:23–32PubMedGoogle Scholar
  47. 47.
    Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Naoyuki Tanuma
    • 1
  • Hiroshi Sakuma
    • 1
  • Atsushi Sasaki
    • 2
  • Yoh Matsumoto
    • 1
  1. 1.Department of Molecular NeuropathologyTokyo Metropolitan Institute for NeuroscienceFuchu, TokyoJapan
  2. 2.Department of Human PathologyGunma University Graduate School of MedicineMaebashi, GunmaJapan

Personalised recommendations