Acta Neuropathologica

, Volume 112, Issue 2, pp 205–215 | Cite as

Ex vivo therapy of malignant melanomas transplanted into organotypic brain slice cultures using inhibitors of histone deacetylases

  • Annett Hölsken
  • Ilker Y. Eyüpoglu
  • Mike Lueders
  • Christian Tränkle
  • Detlef Dieckmann
  • Rolf Buslei
  • Eric Hahnen
  • Ingmar BlümckeEmail author
  • Florian A. Siebzehnrübl
Original Paper


Disease progression in patients suffering from malignant melanomas is often determined by metastatic spreading into brain parenchyma. Systemic chemotherapy regimens are, therefore, mandatory for successful treatment. Most recently, inhibitors of histone deacetylases (HDACi) have been shown to significantly inhibit melanoma progression. Here, mouse as well as human melanoma cells were transplanted into rodent hippocampal slice cultures in order to translate and microscopically confirm promising in vitro chemotherapeutic propensities of HDACi within the organotypic brain environment. In our ex vivo model, tumor progression was significantly inhibited by administration of low micromolar concentrations of second generation HDACi MS-275 over a period of 8 days. In contrast, HDACi treatment with suberoylanilide hydroxamic acid was less efficient ex vivo, although both compounds were successful in the treatment of tumor cell monolayer cultures. Protein levels of the cell cycle inhibitor p21WAF1 were significantly increased after HDACi treatment, which points to enhanced G1 arrest of tumor cells as confirmed by cytofluorometric analysis. Considering the ability of MS-275 to cross the blood–brain barrier, our experimental model identifies the benzamide MS-275 as a promising therapeutic compound for targeting epigenetic chromatin modulation as systemic treatment of metastatic melanomas.


MS-275 Valproic acid SAHA M344 Hippocampus p21 Melanoma metastases 



We kindly acknowledge Dr P. Rohwer, Nikolaus-Fiebiger-Center of Molecular Medicine, University of Erlangen-Nuremberg for assistance with fluorescence tumor cell sorting. We thank Tajana Jungbauer, Ina Jeske, Silke Gutmann and Birte Rings for technical support.


  1. 1.
    Agarwala SS, Kirkwood JM, Gore M, Dreno B, Thatcher N, Czarnetski B, Atkins M, Buzaid A, Skarlos D, Rankin EM (2004) Temozolomide for the treatment of brain metastases associated with metastatic melanoma: a phase II study. J Clin Oncol 22:2101–2107PubMedCrossRefGoogle Scholar
  2. 2.
    Bafaloukos D, Gogas H (2004) The treatment of brain metastases in melanoma patients. Cancer Treat Rev 30:515–520PubMedCrossRefGoogle Scholar
  3. 3.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601PubMedCrossRefGoogle Scholar
  4. 4.
    Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyüpoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489PubMedCrossRefGoogle Scholar
  5. 5.
    Burgess A, Ruefli A, Beamish H, Warrener R, Saunders N, Johnstone R, Gabrielli B (2004) Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23:6693–6701PubMedCrossRefGoogle Scholar
  6. 6.
    Camphausen K, Scott T, Sproull M, Tofilon PJ (2004) Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 10:6066–6071PubMedCrossRefGoogle Scholar
  7. 7.
    Eyüpoglu I, Hahnen E, Tränkle C, Savaskan NE, Siebzehnrubl F, Buslei R, Lemke D, Wick W, Fahlbusch R, Blumcke I (2006) Experimental therapy of malignant gliomas using the inhibitor of histone deacetylases MS-275. Mol Cancer Ther 5:1248–1255PubMedCrossRefGoogle Scholar
  8. 8.
    Eyüpoglu IY, Bechmann I, Nitsch R (2003) Modification of microglia function protects from lesion-induced neuronal alterations and promotes sprouting in the hippocampus. FASEB J 17:1110–1111PubMedGoogle Scholar
  9. 9.
    Eyüpoglu IY, Hahnen E, Buslei R, Siebzehnrubl FA, Savaskan NE, Luders M, Trankle C, Wick W, Weller M, Fahlbusch R, Blumcke I (2005a) Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. J Neurochem 93:992–999CrossRefGoogle Scholar
  10. 10.
    Eyüpoglu IY, Hahnen E, Heckel A, Siebzehnrubl FA, Buslei R, Fahlbusch R, Blumcke I (2005b) Malignant glioma-induced neuronal cell death in an organotypic glioma invasion model. J Neurosurg 102:738–744CrossRefGoogle Scholar
  11. 11.
    Facchetti F, Previdi S, Ballarini M, Minucci S, Perego P, La Porta CA (2004) Modulation of pro- and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 9:573–582PubMedCrossRefGoogle Scholar
  12. 12.
    Fife KM, Colman MH, Stevens GN, Firth IC, Moon D, Shannon KF, Harman R, Petersen-Schaefer K, Zacest AC, Besser M, Milton GW, McCarthy WH, Thompson JF (2004) Determinants of outcome in melanoma patients with cerebral metastases. J Clin Oncol 22:1293–1300PubMedCrossRefGoogle Scholar
  13. 13.
    Fournel M, Trachy-Bourget MC, Yan PT, Kalita A, Bonfils C, Beaulieu C, Frechette S, Leit S, Abou-Khalil E, Woo SH, Delorme D, MacLeod AR, Besterman JM, Li Z (2002) Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res 62:4325–4330PubMedGoogle Scholar
  14. 14.
    Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 98:87–92PubMedCrossRefGoogle Scholar
  15. 15.
    Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163PubMedGoogle Scholar
  16. 16.
    Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23PubMedCrossRefGoogle Scholar
  17. 17.
    Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101:1241–1246PubMedCrossRefGoogle Scholar
  18. 18.
    Hallberg O, Johansson O (2004) Malignant melanoma of the skin—not a sunshine story! Med Sci Monit 10:CR336–CR340PubMedGoogle Scholar
  19. 19.
    Helmbach H, Rossmann E, Kern MA, Schadendorf D (2001) Drug-resistance in human melanoma. Int J Cancer 93:617–622PubMedCrossRefGoogle Scholar
  20. 20.
    Hersey P, Menzies SW, Coventry B, Nguyen T, Farrelly M, Collins S, Hirst D, Johnson H (2005) Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother 54:208–218PubMedCrossRefGoogle Scholar
  21. 21.
    Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100:2041–2046PubMedCrossRefGoogle Scholar
  22. 22.
    Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, Johanson K, Liu R, Lago A, Hofmann G, Macarron R, de los Frailes M, Perez P, Krawiec J, Winkler J, Jaye M (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307:720–728PubMedCrossRefGoogle Scholar
  23. 23.
    Huuskonen J, Suuronen T, Miettinen R, van Groen T, Salminen A (2005) A refined in vitro model to study inflammatory responses in organotypic membrane culture of postnatal rat hippocampal slices. J Neuroinflammation 2:25PubMedCrossRefGoogle Scholar
  24. 24.
    Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedCrossRefGoogle Scholar
  25. 25.
    Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P (1999) Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 42:4669–4679PubMedCrossRefGoogle Scholar
  26. 26.
    Khayat D, Giroux B, Berille J, Cour V, Gerard B, Sarkany M, Bertrand P, Bizzari JP (1994) Fotemustine in the treatment of brain primary tumors and metastases. Cancer Invest 12:414–420PubMedCrossRefGoogle Scholar
  27. 27.
    Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193PubMedCrossRefGoogle Scholar
  28. 28.
    Li J, Staver MJ, Curtin ML, Holms JH, Frey RR, Edalji R, Smith R, Michaelides MR, Davidsen SK, Glaser KB (2004) Expression and functional characterization of recombinant human HDAC1 and HDAC3. Life Sci 74:2693–2705PubMedCrossRefGoogle Scholar
  29. 29.
    Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD, Flax EL, Wickham J, Reed JC, Byrd JC, Grever MR (2004) The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18:1207–1214PubMedCrossRefGoogle Scholar
  30. 30.
    Marks PA (2004) The mechanism of the anti-tumor activity of the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA). Cell Cycle 3:534–535PubMedGoogle Scholar
  31. 31.
    Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168PubMedCrossRefGoogle Scholar
  32. 32.
    Melnikova VO, Bolshakov SV, Walker C, Ananthaswamy HN (2004) Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene 23:2347–2356PubMedCrossRefGoogle Scholar
  33. 33.
    Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46:5097–5116PubMedCrossRefGoogle Scholar
  34. 34.
    Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 40:1–13PubMedCrossRefGoogle Scholar
  35. 35.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  36. 36.
    Murakami T, Cardones AR, Hwang ST (2004) Chemokine receptors and melanoma metastasis. J Dermatol Sci 36:71–78PubMedCrossRefGoogle Scholar
  37. 37.
    Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2002) Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci 70:791–798PubMedCrossRefGoogle Scholar
  38. 38.
    Nettelbeck DM, Rivera AA, Davydova J, Dieckmann D, Yamamoto M, Curiel DT (2003) Cyclooxygenase-2 promoter for tumour-specific targeting of adenoviral vectors to melanoma. Melanoma Res 13:287–292PubMedCrossRefGoogle Scholar
  39. 39.
    Park JH, Jung Y, Kim TY, Kim SG, Jong HS, Lee JW, Kim DK, Lee JS, Kim NK, Bang YJ (2004) Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin Cancer Res 10:5271–5281PubMedCrossRefGoogle Scholar
  40. 40.
    Radbill AE, Fiveash JF, Falkenberg ET, Guthrie BL, Young PE, Meleth S, Markert JM (2004) Initial treatment of melanoma brain metastases using gamma knife radiosurgery: an evaluation of efficacy and toxicity. Cancer 101:825–833PubMedCrossRefGoogle Scholar
  41. 41.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019PubMedCrossRefGoogle Scholar
  42. 42.
    Rosato RR, Almenara JA, Grant S (2003) The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63:3637–3645PubMedGoogle Scholar
  43. 43.
    Sambrook J, Russell DW (2001) Molecular cloning. In: Introducing cloned genes into cultured mammalian cells. CSHL Press, Cold Spring HarbourGoogle Scholar
  44. 44.
    Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A (2006) The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 103:1587–1592PubMedCrossRefGoogle Scholar
  45. 45.
    Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707–7717PubMedCrossRefGoogle Scholar
  46. 46.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182PubMedCrossRefGoogle Scholar
  47. 47.
    de Vries E, Coebergh JW (2004) Cutaneous malignant melanoma in Europe. Eur J Cancer 40:2355–2366PubMedCrossRefGoogle Scholar
  48. 48.
    Wisinski KB (2003) A phase I study of an oral histone deacetylase inhibitor, MS-275 in patients with refractory solid tumors and lymphomas. Proc Am Soc Clin Oncol 22:802Google Scholar
  49. 49.
    Yokota T, Matsuzaki Y, Miyazawa K, Zindy F, Roussel MF, Sakai T (2004) Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Oncogene 23:5340–5349PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshida M, Furumai R, Nishiyama M, Komatsu Y, Nishino N, Horinouchi S (2001) Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol 48(Suppl. 1):S20–S26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Annett Hölsken
    • 1
  • Ilker Y. Eyüpoglu
    • 2
  • Mike Lueders
    • 3
  • Christian Tränkle
    • 4
  • Detlef Dieckmann
    • 5
  • Rolf Buslei
    • 1
  • Eric Hahnen
    • 1
    • 6
  • Ingmar Blümcke
    • 1
    Email author
  • Florian A. Siebzehnrübl
    • 1
  1. 1.Department of NeuropathologyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of NeurosurgeryUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of Medicine IUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Department of Pharmacology and Toxicology, Institute of PharmacyUniversity of BonnBonnGermany
  5. 5.Department of DermatologyUniversity of Erlangen-NurembergErlangenGermany
  6. 6.Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany

Personalised recommendations