Acta Neuropathologica

, Volume 110, Issue 2, pp 178–184 | Cite as

TP53 promoter methylation in human gliomas

  • Vishwa Jeet Amatya
  • Ulrike Naumann
  • Michael Weller
  • Hiroko Ohgaki
Regular Paper


Methylation of the promoter region of tumor suppressor genes may be associated with transcriptional silencing and tumor progression. The 5′ region of the TP53 gene does not contain a CpG island, but a basal promoter region of 85 bp is essential for its full promoter activity. In the present study, we assessed whether TP53 promoter methylation is present in malignant glioma cells and whether this is associated with reduced TP53 expression. Methylation-specific PCR revealed TP53 promoter methylation in three (U87MG, LNT-229, T98G) out of six malignant glioma cell lines studied. Treatment with 5-aza-2’-deoxycytidine (5-aza-dC) led to up-regulated expression of TP53 mRNA and protein in U87MG and T98G cells, suggesting that promoter methylation is associated with reduced expression in some malignant glioma cells. We then assessed TP53 promoter methylation in primary tissue of low-grade gliomas, and observed TP53 promoter methylation in 29/48 (60%) low-grade astrocytomas, 11/18 (61%) oligoastrocytomas, and 31/42 (74%) oligodendrogliomas. Promoter methylation of the p14 ARF gene, another gene involved in the TP53 pathway, was detected by methylation-specific PCR in 5/49 (10%) low-grade astrocytomas, 7/18 (39%) oligoastrocytomas, and 15/41 (37%) oligodendrogliomas. Our previous and present data show alterations of at least one of TP53 promoter methylation, p14 ARF promoter methylation, and TP53 mutations in 43/49 (88%) of low-grade astrocytomas, 15/18 (83%) of oligoastrocytomas, and 35/42 (83%) oligodendrogliomas, suggesting that disruption of the TP53/p14 ARF pathway is frequent in all histological types of low-grade glioma.


TP53 mutation TP53 methylation p14ARF methylation Low-grade astrocytoma Oligodendrogliomas 



This study was supported by the Jaqueline Seroussi Memorial Foundation for Cancer Research (MW) and the Foundation for Promotion of Cancer Research, Japan.


  1. 1.
    Agirre X, Vizmanos JL, Calasanz MJ, Garcia-Delgado M, Larrayoz MJ, Novo FJ (2003) Methylation of CpG dinucleotides and/or CCWGG motifs at the promoter of TP53 correlates with decreased gene expression in a subset of acute lymphoblastic leukemia patients. Oncogene 22:1070–1072CrossRefPubMedGoogle Scholar
  2. 2.
    Alonso ME, Bello MJ, Gonzalez-Gomez P, Arjona D, Lomas J, de Campos JM, Isla A, Sarasa JL, Rey JA (2003) Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet 144:134–142CrossRefPubMedGoogle Scholar
  3. 3.
    Bienz-Tadmor B, Zakut-Houri R, Libresco S, Givol D, Oren M (1985) The 5’ region of the p53 gene: evolutionary conservation and evidence for a negative regulatory element. EMBO J 4:3209–3213PubMedGoogle Scholar
  4. 4.
    Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, Herman JG (2000) Hypermethylation-associated inactivation of p14ARF is independent of p16INK4amethylation and p53 mutational status. Cancer Res 60:129–133PubMedGoogle Scholar
  5. 5.
    Freedman DA, Wu L, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 55:96–107CrossRefPubMedGoogle Scholar
  6. 6.
    Fruhwald MC, O’Dorisio MS, Dai Z, Tanner SM, Balster DA, Gao X, Wright FA, Plass C (2001) Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas—implications for tumor biology and potential clinical utility. Oncogene 20:5033–5042CrossRefPubMedGoogle Scholar
  7. 7.
    Fulci G, Labuhn M, Maier D, Lachat Y, Hausmann O, Hegi ME, Janzer RC, Merlo A, Van Meir EG (2000) p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 19:3816–3822CrossRefPubMedGoogle Scholar
  8. 8.
    Gonzalez-Gomez P, Bello MJ, Arjona D, Lomas J, Alonso ME, de Campos JM, Vaquero J, Isla A, Gutierrez M, Rey JA (2003) Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol 22:601–608PubMedGoogle Scholar
  9. 9.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826CrossRefPubMedGoogle Scholar
  10. 10.
    Ichimura K, Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDK2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13:1065–1072PubMedGoogle Scholar
  11. 11.
    Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1–S transition control gene abnormalities. Cancer Res 60:417–424PubMedGoogle Scholar
  12. 12.
    Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, Van Meir EG (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479PubMedGoogle Scholar
  13. 13.
    Kang JH, Kim SJ, Noh DY, Park IA, Choe KJ, Yoo OJ, Kang HS (2001) Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest 81:573–579PubMedGoogle Scholar
  14. 14.
    Karpf AR, Moore BC, Ririe TO, Jones DA (2001) Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2’-deoxycytidine. Mol Pharmacol 59:751–757PubMedGoogle Scholar
  15. 15.
    Kleihues P, Cavenee WK (2000) WHO Classification of tumours: pathology and genetics of tumours of the nervous system. IARCPress, LyonGoogle Scholar
  16. 16.
    Kleihues P, Davis RL, Ohgaki H, Burger PC, Westphal MM, Cavenee WK (2000) Diffuse astrocytoma. In: Kleihues P, Cavenee WK (eds) WHO classification of tumours: pathology and genetics of tumours of the nervous system. IARC Press, Lyon, pp 22–26Google Scholar
  17. 17.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331CrossRefPubMedGoogle Scholar
  18. 18.
    Maintz D, Fiedler K, Koopmann J, Rollbrocker B, Nechev S, Lenartz D, Stangl AP, Louis DN, Schramm J, Wiestler OD, von Deimling A von (1997) Molecular genetic evidence for subtypes of oligoastrocytomas. J Neuropathol Exp Neurol 56:1098–1104PubMedGoogle Scholar
  19. 19.
    Nakamura M, Watanabe T, Klangby U, Asker CE, Wiman KG, Yonekawa Y, Kleihues P, Ohgaki H (2001) P14Arf deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11:159–168PubMedGoogle Scholar
  20. 20.
    Naumann U, Kugler S, Wolburg H, Wick W, Rascher G, Schulz JB, Conseiller E, Bahr M, Weller M (2001) Chimeric tumor suppressor 1, a p53-derived chimeric tumor suppressor gene, kills p53 mutant and p53 wild-type glioma cells in synergy with irradiation and CD95 ligand. Cancer Res 61:5833–5842PubMedGoogle Scholar
  21. 21.
    Newcomb EW, Alonso M, Sung T, Miller DC (2000) Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum Pathol 31:115–119PubMedGoogle Scholar
  22. 22.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899PubMedGoogle Scholar
  23. 23.
    Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, Schuler D, Probst-Hensch NM, Yasargil MG, Yonekawa Y, Lutolf U, Kleihues P, Ohgaki H (2004) Population-based study on incidence, survival rates, and genetic alterations of low-grade astrocytomas and oligodendrogliomas. Acta Neuropathol 108:49–56CrossRefPubMedGoogle Scholar
  24. 24.
    Picksley SM, Lane DP (1993) The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53? Bioessays 15:689–690CrossRefPubMedGoogle Scholar
  25. 25.
    Pogribny IP, James SJ (2002) Reduction of p53 gene expression in human primary hepatocellular carcinoma is associated with promoter region methylation without coding region mutation. Cancer Lett 176:169–174CrossRefPubMedGoogle Scholar
  26. 26.
    Pogribny IP, Pogribna M, Christman JK, James SJ (2000) Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res 60:588–594PubMedGoogle Scholar
  27. 27.
    Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175–1190PubMedGoogle Scholar
  28. 28.
    Schroeder M, Mass MJ (1997) CpG methylation inactivates the transcriptional activity of the promoter of the human p53 tumor suppressor gene. Biochem Biophys Res Commun 235:403–406CrossRefPubMedGoogle Scholar
  29. 29.
    Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014CrossRefPubMedGoogle Scholar
  30. 30.
    Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, Funada N, Fujimaki T, Hojo S, Kubo O, Ide T, Usui M, Ochiai C, Ito S, Takahashi H, Mukasa A, Asai A, Kirino T (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res 8:196–201PubMedGoogle Scholar
  31. 31.
    Vousden KH (2002) Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602:47–59PubMedGoogle Scholar
  32. 32.
    Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–224PubMedGoogle Scholar
  33. 33.
    Watanabe T, Nakamura M, Kros JM, Burkhard C, Yonekawa Y, Kleihues P, Ohgaki H (2001) Phenotype versus genotype correlation in oligodendrogliomas and low-grade diffuse astrocytomas. Acta Neuropathol 103:267–275CrossRefPubMedGoogle Scholar
  34. 34.
    Watanabe T, Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation and homozygous deletion of the p14ARFand p16INK4a genes in oligodendrogliomas. Acta Neuropathol 101:185–189PubMedGoogle Scholar
  35. 35.
    Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60:1181–1189PubMedGoogle Scholar
  36. 36.
    Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T (2003) Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res 9:4884–4890PubMedGoogle Scholar
  37. 37.
    Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M (2003) CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 22:8233–8245CrossRefPubMedGoogle Scholar
  38. 38.
    Wolter M, Reifenberger J, Blaschke B, Ichimura K, Schmidt EE, Collins VP, Reifenberger G (2001) Oligodendroglial tumors frequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a), p14ARF, and CDKN2B (MTS2, p15INK4b) tumor suppressor genes. J Neuropathol Exp Neurol 60:1170–1180PubMedGoogle Scholar
  39. 39.
    Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-MDM-2 autoregulatory feedback loop. Genes Dev 7:1126–1132PubMedGoogle Scholar
  40. 40.
    Yin D, Xie D, Hofmann WK, Miller CW, Black KL, Koeffler HP (2002) Methylation, expression, and mutation analysis of the cell cycle control genes in human brain tumors. Oncogene 21:8372–8378CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Vishwa Jeet Amatya
    • 1
  • Ulrike Naumann
    • 2
  • Michael Weller
    • 2
  • Hiroko Ohgaki
    • 1
  1. 1.International Agency for Research on CancerLyonFrance
  2. 2.Laboratory of Molecular Neuro-Oncology, Hertie Institute for Clinical Brain Research, Department of General NeurologyUniversity of TübingenTübingenGermany

Personalised recommendations