Advertisement

Acta Neuropathologica

, Volume 110, Issue 2, pp 145–150 | Cite as

Overexpression of heat shock proteins in pallido-nigral axonal spheroids of nonhuman aged primates

  • Takahiro FukudaEmail author
  • Jun Shimizu
  • Hiroshi Furuhata
  • Toshiaki Abe
  • Keiko Shimizu
  • Takao Oishi
  • Makoto Ogihara
  • Jun Kubota
  • Akira Sasaki
  • Kazuaki Sasaki
  • Takashi Azuma
  • Shinichiro Umemura
Regular Paper

Abstract

The occurrence of spheroids has been described in the globus pallidus (GP) and substantia nigra pars reticulata (SNr) of aged rhesus monkeys. Opinions vary as to the origin of spheroids. Ultrastructural and immunohistochemical analysis suggested that spheroids originate from degenerating axons or astroglia. In the present study, we have investigated the GP and SNr of aged monkeys (Macaca fascicularis and Macaca mulatta). Although immunoreactive for microtubule-associated protein (MAP) 1A, tau, amyloid precursor protein, synaptophysin and phosphorylated neurofilament, spheroids were not immunoreactive for MAP1B and MAP2. We confirmed the axonal nature of pallido-nigral spheroids in aged rhesus monkeys. Pallido-nigral spheroids have been reported to overexpress stress proteins, such as ubiquitin, αB-crystallin, and heat shock protein (Hsp) 27. We further evaluated the expression of Hsps in pallido-nigral spheroids. As well as being intensely immunoreactive for ubiquitin, αB-crystallin, Hsp27, and Hsp70, spheroids were immunoreactive for Hsp32 (heme oxygenase-1), Hsp40, Hsp60, and Hsp90. On the basis of these findings, we speculate that Hsp32-immunoreactive spheroids might be expressed as an oxidative stress response. Induction of other Hsps might play a role in protection of axons from the aggregation of neurofilament, MAPs and other proteins, and failure to protect degenerating axons might result in their proteolysis by the ubiquitin-proteasome system.

Keywords

Heat shock proteins Spheroids Globus pallidus Substantia nigra pars reticulata Macaca fascicularis/Macaca mulatta 

Notes

Acknowledgements

This study was supported in part by Health and Labor Sciences Research Grants from the Ministry of Health, Labor and Welfare of Japan. We are indebted to Ms. Naoko Takabayashi and Miss. Kumiko Iwabuchi for technical assistance.

References

  1. 1.
    Acarin L, Paris J, Gonzalez B, Castellano B (2002) Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia 38:1–14CrossRefPubMedGoogle Scholar
  2. 2.
    Andley UP, Song Z, Wawrousek EF, Brady JP, Bassnett S, Fleming TP (2001) Lens epithelial cells derived from αB-crystallin knockout mice demonstrate hyperproliferation and genomic instability. FASEB J 15:221–229CrossRefPubMedGoogle Scholar
  3. 3.
    Arai N, Honda Y, Amano N, Yagishita S, Misugi K (1988) Foamy spheroid bodies in the substantia nigra. Report of an unusual case with recurrent attacks of peculiar twilight state. J Neurol 235:330–334CrossRefPubMedGoogle Scholar
  4. 4.
    Arai N, Yagishita S, Misugi K, Oda M, Kosaka K, Mizutani T, Morimatsu Y (1992) Peculiar axonal debris with subsequent astrocytic response (foamy spheroid body). A topographic, light microscopic, immunohistochemical and electron microscopic study. Virchows Arch [A] 420:243–252Google Scholar
  5. 5.
    Arai N, Mizutani T, Morimatsu Y (1993) Foamy spheroid bodies in the globus pallidus and the substantia nigra pars reticulata: an investigation on regional distribution in 56 cases without neurodegenerative diseases. Virchows Arch [A] 422:307–311Google Scholar
  6. 6.
    Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380CrossRefPubMedGoogle Scholar
  7. 7.
    Bhat SP, Nagineni CN (1989) alpha B subunit of lens-specific protein alpha-crystallin is present in other ocular and non-ocular tissues. Biochem Biophys Res Commun 158:319–325CrossRefPubMedGoogle Scholar
  8. 8.
    Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1994) Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet 344:1055–1056CrossRefPubMedGoogle Scholar
  9. 9.
    Bronson RT, Schoene WC (1980) Spontaneous pallido-nigral accumulation of iron pigment and spheroid-like structures in macaque monkeys. J Neuropathol Exp Neurol 39:181–196PubMedGoogle Scholar
  10. 10.
    Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70CrossRefPubMedGoogle Scholar
  11. 11.
    Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Greengard P, Xu H (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 100:721–726CrossRefPubMedGoogle Scholar
  12. 12.
    Fukuda T, Tanaka J, Watabe K, Minamitani M (1995) Granulo-reticular spheroid bodies appearing in various neurodegenerative diseases are immunohistochemically made up of neuronal components. Jikeikai Med J 42:87–92Google Scholar
  13. 13.
    Greenfield JG, Bosanquet FD (1953) The brain-stem lesions in parkinsonism. J Neurol Neurosurg Psychiatry 16:213–226Google Scholar
  14. 14.
    Head MW, Goldman JE (2000) Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol Appl Neurobiol 26:304–312CrossRefPubMedGoogle Scholar
  15. 15.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479CrossRefPubMedGoogle Scholar
  16. 16.
    Hirayama E, Atagi H, Hiraki A, Kim J (2004) Heat shock protein 70 is related to thermal inhibition of nuclear export of the influenza virus ribonucleoprotein complex. J Virol 78:1263–1270CrossRefPubMedGoogle Scholar
  17. 17.
    Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol 132:667–679CrossRefPubMedGoogle Scholar
  18. 18.
    Kadota T, Fujita M, Kadota K (1991) Immunocytochemical localization of synaptophysin on the smooth-surfaced tubular membranes present in nerve terminal and preterminal areas in the rat cerebellar cortex. Arch Histol Cytol 54:519–525PubMedGoogle Scholar
  19. 19.
    Kanai Y, Hirokawa N (1995) Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 14:421–432CrossRefPubMedGoogle Scholar
  20. 20.
    Kato H, Kogure K, Liu XH, Araki T, Kato K, Itoyama Y (1995) Immunohistochemical localization of the low molecular weight stress protein HSP27 following focal cerebral ischemia in the rat. Brain Res 679:1–7CrossRefPubMedGoogle Scholar
  21. 21.
    Kosaka K, Matsushita M, Oyanagi S, Uchiyama S, Iwase S (1981) Pallido-nigro-luysial atrophy with massive appearance of corpora amylacea in the CNS. Acta Neuropathol (Berl) 53:169–172Google Scholar
  22. 22.
    Minami M, Mizutani T, Kawanishi R, Suzuki Y, Mori H (2003) Neuronal expression of αB crystallin in cerebral infarction. Acta Neuropathol 105:549–554Google Scholar
  23. 23.
    Moreno FJ, Diaz-Nido J, Jimenez JS, Avila J (1999) Distribution of CK2, its substrate MAP1B and phosphatases in neuronal cells. Mol Cell Biochem 191:201–205CrossRefPubMedGoogle Scholar
  24. 24.
    Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23:5187–5196PubMedGoogle Scholar
  25. 25.
    Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424CrossRefPubMedGoogle Scholar
  26. 26.
    Nozawa N, Yamauchi Y, Ohtsuka K, Kawaguchi Y, Nishiyama Y (2004) Formation of aggresome-like structures in herpes simplex virus type 2-infected cells and a potential role in virus assembly. Exp Cell Res 299:486–497CrossRefPubMedGoogle Scholar
  27. 27.
    Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843CrossRefPubMedGoogle Scholar
  28. 28.
    Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 18:2040–2048CrossRefPubMedGoogle Scholar
  29. 29.
    Sanz O, Acarin L, Gonzalez B, Castellano B (2001) Expression of 27 kDa heat shock protein (Hsp27) in immature rat brain after a cortical aspiration lesion. Glia 36:259–270CrossRefPubMedGoogle Scholar
  30. 30.
    Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774CrossRefPubMedGoogle Scholar
  31. 31.
    Schultz C, Dick EJ, Cox AB, Hubbard GB, Braak E, Braak H (2001) Expression of stress proteins alpha B-crystallin, ubiquitin, and hsp27 in pallido-nigral spheroids of aged rhesus monkeys. Neurobiol Aging 22:677–682Google Scholar
  32. 32.
    Seitelberger F (1969) General neuropathology of degenerative processes of the nervous system. Neurosci Res (N Y) 2:253–299Google Scholar
  33. 33.
    Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32CrossRefPubMedGoogle Scholar
  34. 34.
    Shiraki H, Yase Y (1975) Amyotrophic lateral sclerosis in Japan. Handb Clin Neurol 22:353–419Google Scholar
  35. 35.
    Siddiqi ZA, Peters A (1999) The effect of aging on pars compacta of the substantia nigra in rhesus monkey. J Neuropathol Exp Neurol 58:903–920PubMedGoogle Scholar
  36. 36.
    Soares MP, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey ST, Colvin RB, Choi AM, Poss KD, Bach FH (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4:1073–1077CrossRefPubMedGoogle Scholar
  37. 37.
    Stadlan EM, Duvoisen R, Yahr M (1966) The pathology of parkinsonism. In: Proceedings of the Vth International Congress of Neuropathologists, Zurich, 1965. Excerpta Medica, Amsterdam, pp 569–571Google Scholar
  38. 38.
    Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359PubMedGoogle Scholar
  39. 39.
    Takahashi K, Nakashima R, Takao T, Nakamura H (1977) Pallido-nigro-luysial atrophy associated with degeneration of the centrum medianum. A clinicopathologic and electron microscopic study. Acta Neuropathol (Berl) 37:81–85Google Scholar
  40. 40.
    Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765CrossRefPubMedGoogle Scholar
  41. 41.
    Tomimoto H, Akiguchi I, Wakita H, Nakamura S, Kimura J (1995) Ultrastructural localization of amyloid protein precursor in the normal and postischemic gerbil brain. Brain Res 672:187–195CrossRefPubMedGoogle Scholar
  42. 42.
    Touri F, Hawkes R, Riederer BM (1996) Differential distribution of MAP1a and aldolase c in adult mouse cerebellum. Eur J Neurosci 8:61–68PubMedGoogle Scholar
  43. 43.
    Tretiakoff C (1919) Etude histopathologique du locus niger dans 54 cas de maladies du systeme nerveux. In: Contribution a l’etude de l’anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonius musculaire et de la maladie de Parkinson. Thèse, University of Paris, pp 29–56Google Scholar
  44. 44.
    Van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156PubMedGoogle Scholar
  45. 45.
    Willwohl D, Kettner M, Braak H, Hubbard GB, Dick EJ Jr, Cox AB, Schultz C (2002) Pallido-nigral spheroids in nonhuman primates: accumulation of heat shock proteins in astroglial processes. Acta Neuropathol 103:276–280Google Scholar
  46. 46.
    Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 18:2049–2056CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Takahiro Fukuda
    • 1
    Email author
  • Jun Shimizu
    • 2
  • Hiroshi Furuhata
    • 3
  • Toshiaki Abe
    • 2
  • Keiko Shimizu
    • 4
  • Takao Oishi
    • 4
  • Makoto Ogihara
    • 5
  • Jun Kubota
    • 5
  • Akira Sasaki
    • 5
  • Kazuaki Sasaki
    • 6
  • Takashi Azuma
    • 6
  • Shinichiro Umemura
    • 6
  1. 1.Division of Neuropathology, Department of Neuroscience, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
  2. 2.Department of NeurosurgeryThe Jikei University School of MedicineTokyoJapan
  3. 3.Medical Engineering Laboratory, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
  4. 4.Department of Cellular and Molecular Biology, Primate Research InstituteKyoto UniversityAichiJapan
  5. 5.Hitachi Medical CorporationChibaJapan
  6. 6.Central Research LaboratoryHitachi Ltd.TokyoJapan

Personalised recommendations