Acta Neuropathologica

, Volume 109, Issue 6, pp 589–597 | Cite as

Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region

  • Rolf BusleiEmail author
  • Michael Nolde
  • Bernd Hofmann
  • Stephan Meissner
  • Ilker Y. Eyupoglu
  • Florian Siebzehnrübl
  • Eric Hahnen
  • Jürgen Kreutzer
  • Rudolf Fahlbusch
Regular Paper


Dysregulation of the Wnt signalling pathway contributes to developmental abnormalities and carcinogenesis of solid tumours. Here, we examined β-catenin and adenomatous polyposis coli (APC) by mutational analysis in pituitary adenomas (n=60) and a large series of craniopharyngiomas (n=41). Furthermore, the expression pattern of β-catenin was immunohistochemically analysed in a cohort of tumours and cysts of the sellar region including pituitary adenomas (n=58), craniopharyngiomas (n=57), arachnoidal cysts (n=8), Rathke’s cleft cysts (n=10) and xanthogranulomas (n=6). Whereas APC mutations were not detectable in any tumour entity, β-catenin mutations were present in 77% of craniopharyngiomas, exclusively of the adamantinomatous subtype. All mutations affected exon 3, which encodes the degradation targeting box of β-catenin compatible with an accumulation of nuclear β-catenin protein. In addition, a novel 81-bp deletion of this exonic region was detected in one case. Immunohistochemical analysis confirmed a shift from membrane-bound to nuclear accumulation of β-catenin in 94% of the adamantinomatous tumours. Aberrant distribution patterns of β-catenin were never observed in the other tumour entities under study. We conclude that β-catenin mutations and/or nuclear accumulation serve as diagnostic hallmarks of the adamantinomatous variant, setting it apart from the papillary variant of craniopharyngioma.


Wnt-signalling β-Catenin Nuclear accumulation Adenomatous polyposis coli Carcinogenesis 



We thank Dr. I. Blümcke (University of Erlangen, Germany) and Dr. A. Koch (University of Bonn, Germany) for helpful discussions. We thank V. Schmidt, S. Gutmann and B. Rings for expert technical assistance. The work is supported by ELAN and Marohn funds from the University of Erlangen Medical Faculty.


  1. 1.
    Behrens J, Lustig B (2004) The Wnt connection to tumorigenesis. Int J Dev Biol 48:477–487Google Scholar
  2. 2.
    Brabletz T, Kirchner T (2003) [Morphogenetic aspects of colorectal cancer]. Pathologe 24:44–48Google Scholar
  3. 3.
    Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48:137–144Google Scholar
  4. 4.
    Dahia PL, Aguiar RC, Honegger J, Fahlbusch R, Jordan S, Lowe DG, Lu X, Clayton RN, Besser GM, Grossman AB (1998) Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16:69–76Google Scholar
  5. 5.
    Fahlbusch R, Honegger J, Paulus W, Huk W, Buchfelder M (1999) Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg 90:237–250Google Scholar
  6. 6.
    Fodde R (2002) The APC gene in colorectal cancer. Eur J Cancer 38:867–871Google Scholar
  7. 7.
    Friedrich A, Kullmann F (2003) [Familial adenomatous polyposis syndrome (FAP): pathogenesis and molecular mechanisms]. Med Klin (Munich) 98:776–782Google Scholar
  8. 8.
    Gorski GK, McMorrow LE, Donaldson MH, Freed M (1992) Multiple chromosomal abnormalities in a case of craniopharyngioma. Cancer Genet Cytogenet 60:212–213Google Scholar
  9. 9.
    Hassanein AM, Glanz SM, Kessler HP, Eskin TA, Liu C (2003) Beta-catenin is expressed aberrantly in tumors expressing shadow cells. Pilomatricoma, craniopharyngioma, and calcifying odontogenic cyst. Am J Clin Pathol 120:732–736Google Scholar
  10. 10.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L,Costa LT da , Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512Google Scholar
  11. 11.
    Herman V, Drazin NZ, Gonsky R, Melmed S (1993) Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77:50–55Google Scholar
  12. 12.
    Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553Google Scholar
  13. 13.
    Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL (1992) Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 74:914–919Google Scholar
  14. 14.
    Kato K, Nakatani Y, Kanno H, Inayama Y, Ijiri R, Nagahara N, Miyake T, Tanaka M, Ito Y, Aida N, Tachibana K, Sekido K, Tanaka Y (2004) Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol 203:814–821Google Scholar
  15. 15.
    Kirchner T, Brabletz T (2000) Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation. Am J Pathol 157:1113–1121Google Scholar
  16. 16.
    Koch A, Denkhaus D, Albrecht S, Leuschner I, Schweinitz D von, Pietsch T (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59:269–273Google Scholar
  17. 17.
    Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 10:1382–1394Google Scholar
  18. 18.
    Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 16:3173–3185Google Scholar
  19. 19.
    McCabe CJ, Gittoes NJ (1999) PTTG—a new pituitary tumour transforming gene. J Endocrinol 162:163–166Google Scholar
  20. 20.
    Moreno-Bueno G, Gamallo C, Perez-Gallego L, Contreras F, Palacios J (2001) Beta-catenin expression in pilomatrixomas. Relationship with beta-catenin gene mutations and comparison with beta-catenin expression in normal hair follicles. Br J Dermatol 145:576–581Google Scholar
  21. 21.
    Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790Google Scholar
  22. 22.
    Nagase H, Nakamura Y (1993) Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 2:425–434Google Scholar
  23. 23.
    Nakatani Y, Masudo K, Miyagi Y, Inayama Y, Kawano N, Tanaka Y, Kato K, Ito T, Kitamura H, Nagashima Y, Yamanaka S, Nakamura N, Sano J, Ogawa N, Ishiwa N, Notohara K, Resl M, Mark EJ (2002) Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol 15:617–624Google Scholar
  24. 24.
    Paulus W, Honegger J, Keyvani K, Fahlbusch R (1999) Xanthogranuloma of the sellar region: a clinicopathological entity different from adamantinomatous craniopharyngioma. Acta Neuropathol 97:377–382Google Scholar
  25. 25.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851Google Scholar
  26. 26.
    Sarubi JC, Bei H, Adams EF, Boson WL, Friedman E, Brandao K, Kalapothakis E, Miranda D, Valle FL, Sarquis MS, De Marco L (2001) Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsalpha and Gi2alpha genes. Neurosci Lett 310:5–8Google Scholar
  27. 27.
    Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S (2002) Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161:1997–2001Google Scholar
  28. 28.
    Sekine S, Sato S, Takata T, Fukuda Y, Ishida T, Kishino M, Shibata T, Kanai Y, Hirohashi S (2003) Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol 163:1707–1712Google Scholar
  29. 29.
    Sekine S, Takata T, Shibata T, Mori M, Morishita Y, Noguchi M, Uchida T, Kanai Y, Hirohashi S (2004) Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology 45:573–579Google Scholar
  30. 30.
    Semba S, Han SY, Ikeda H, Horii A (2001) Frequent nuclear accumulation of beta-catenin in pituitary adenoma. Cancer 91:42–48Google Scholar
  31. 31.
    Shimon I, Yan X, Ray DW, Melmed S (1997) Cytokine-dependent gp130 receptor subunit regulates human fetal pituitary adrenocorticotropin hormone and growth hormone secretion. J Clin Invest 100:357–363Google Scholar
  32. 32.
    Tanaka Y, Kato K, Notohara K, Nakatani Y, Miyake T, Ijiri R, Nishimata S, Ishida Y, Kigasawa H, Ohama Y, Tsukayama C, Kobayashi Y, Horie H (2003) Significance of aberrant (cytoplasmic/nuclear) expression of beta-catenin in pancreatoblastoma. J Pathol 199:185–190Google Scholar
  33. 33.
    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426Google Scholar
  34. 34.
    Thapar K, Kovacs K (1998) Neoplasms of the sellar region. In: Bigner DD, McLendon RE, Bruner JM (eds) Russell and Rubinstein’s pathology of tumors of the nervous system, 6th edn. Arnold, London, pp 629–680Google Scholar
  35. 35.
    Tsang WY (2004) Only adamantinomatous but not papillary type of craniopharyngioma is associated with beta-catenin mutation. Adv Anat Pathol 11:223Google Scholar
  36. 36.
    Tziortzioti V, Ruebel KH, Kuroki T, Jin L, Scheithauer BW, Lloyd RV (2001) Analysis of beta-catenin mutations and alpha-, beta-, and gamma-catenin expression in normal and neoplastic human pituitary tissues. Endocr Pathol 12:125–136Google Scholar
  37. 37.
    Vallar L, Spada A, Giannattasio G (1987) Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330:566–568Google Scholar
  38. 38.
    Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450Google Scholar
  39. 39.
    Xin W, Rubin MA, McKeever PE (2002) Differential expression of cytokeratins 8 and 20 distinguishes craniopharyngioma from rathke cleft cyst. Arch Pathol Lab Med 126:1174–1178Google Scholar
  40. 40.
    Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S (1999) Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84:761–767Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Rolf Buslei
    • 1
    Email author
  • Michael Nolde
    • 1
  • Bernd Hofmann
    • 2
  • Stephan Meissner
    • 1
  • Ilker Y. Eyupoglu
    • 2
  • Florian Siebzehnrübl
    • 1
  • Eric Hahnen
    • 1
    • 3
  • Jürgen Kreutzer
    • 2
  • Rudolf Fahlbusch
    • 2
  1. 1.Department of NeuropathologyFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  2. 2.Department of NeurosurgeryFriedrich-Alexander University Erlangen-NurembergErlangenGermany
  3. 3.Department of Human GeneticsUniversity CologneKölnGermany

Personalised recommendations