Acta Neuropathologica

, Volume 111, Issue 5, pp 459–464 | Cite as

Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing

  • Steven A. Chance
  • Manuel F. Casanova
  • Andy E. Switala
  • Timothy J. Crow
  • Margaret M. Esiri
Original Paper

Abstract

The cerebral cortex undergoes changes during normal ageing with increasing effect on cognition. Disruption of minicolumnar organization of neurons is found with increased cognitive impairment in primates. We measured the minicolumn spacing and organization of cells in Heschl’s gyrus (primary auditory cortex, A1), the Planum Temporale (Tpt, BA22), and middle temporal gyrus (MTG, BA21) of 17 normally aged human adults. Age-associated minicolumn thinning was found in temporal lobe association cortex (Tpt and MTG) but not primary auditory cortex (HG). Minicolumn thinning was also associated with greater plaque load, although this effect was present in all areas. The regional variability of age-associated minicolumn thinning reflects the regionally selective progression of tangle pathology in Alzheimer’s Disease (AD). The generalized effect of plaque load persists when controlling for age. Therefore plaque load combines with age to increase minicolumn thinning, which may reflect increasing risk of AD. Since old age is the greatest risk factor for dementia, the transition to dementia may involve an extension of normal ageing processes.

Keywords

Dementia Plaques Planum Temporale Heschl’s gyrus Middle temporal gyrus 

References

  1. 1.
    Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 71:83–248PubMedCrossRefGoogle Scholar
  2. 2.
    Arendt T (2004) Neurodegeneration and plasticity. Int J Dev Neurosci 22:507–514PubMedCrossRefGoogle Scholar
  3. 3.
    Arendt T, Schindler C, Bruckner MK, Eschrich K, Bigl V, Zedlick D, Marcova L (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer’s disease carrying apolipoprotein epsilon 4 allele. J Neurosci 17:516–529PubMedGoogle Scholar
  4. 4.
    Arendt T, Bruckner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurons that retain their capacity of plastic remodelling in the adult brain. Neuroscience 83:991–1002PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong RA, Cairns NJ, Lantos PL (1997) Dementia with Lewy bodies: clustering of Lewy bodies in human patients. Neurosci Lett 224:41–44PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong RA, Cairns NJ, Lantos PL (1998) Clustering of Pick bodies in patients with Pick’s disease. Neurosci Lett 242:81–84PubMedCrossRefGoogle Scholar
  7. 7.
    Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, Stanley HE, Urbanc B, Hyman BT (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043PubMedCrossRefGoogle Scholar
  8. 8.
    Buxhoeveden DP, Switala AE, Litaker M, Roy E, Casanova MF (2001) Lateralization of minicolumns in human Planum Temporale is absent in nonhuman primate cortex. Brain Behav Evol 57(6):349–358PubMedCrossRefGoogle Scholar
  9. 9.
    Buxhoeveden D, Fobbs A, Roy E, Casanova M (2002) Quantitative comparison of radial cell columns in children with Down’s syndrome and controls. J Intellect Disabil Res 46:76–81PubMedCrossRefGoogle Scholar
  10. 10.
    Bai L, Hof PR, Standaert DG, Xing Y, Nelson SE, Young AB, Magnusson KR (2004) Changes in the expression of the NR2B subunit during ageing in macaque monkeys. Neurobiol Ageing 25(2):201–208CrossRefGoogle Scholar
  11. 11.
    Chance SA, Casanova MF, Switala AE, Buxhoeveden D, Crow TJ (2005) Asymmetries of minicolumnar structure in human Heschl’s gyrus and Planum Temporale (submitted)Google Scholar
  12. 12.
    Chance SA, Walker M, Crow TJ (2005) Reduced density of calbindin immunoreactive interneurons in the Planum Temporale in Schizophrenia. Brain Res 1046:32–37PubMedCrossRefGoogle Scholar
  13. 13.
    Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242PubMedCrossRefGoogle Scholar
  14. 14.
    Cruz L, Roe DL, Urbanc B, Cabral H, Stanley HE, Rosene DL (2004) Age-related reduction in microcolumnar structure in area 46 of the rhesus monkey correlates with behavioral decline. Proc Natl Acad Sci USA 101:15846–15851PubMedCrossRefGoogle Scholar
  15. 15.
    Del Rio MR, DeFelipe J (1995) A light and electron microscopic study of calbindin D-28k immunoreactive double bouquet cells in the human temporal cortex. Brain Res 690:133–140PubMedCrossRefGoogle Scholar
  16. 16.
    Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13(9):950–961PubMedCrossRefGoogle Scholar
  17. 17.
    Elston GN, Rosa MG (2000) Pyramidal cells, patches, and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. J Neurosci 20:RC117PubMedGoogle Scholar
  18. 18.
    Geula C (1998) Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology 51(Suppl 1):S18–S29PubMedGoogle Scholar
  19. 19.
    Greene JR, Radenahmad N, Wilcock GK, Neal JW, Pearson RC (2001) Accumulation of calbindin in cortical pyramidal cells with ageing; a putative protective mechanism which fails in Alzheimer’s disease. Neuropathol Appl Neurobiol 27:339–342PubMedCrossRefGoogle Scholar
  20. 20.
    Hiorns RW, Neal JW, Pearson RC, Powell TP (1991) Clustering of ipsilateral cortico-cortical projection neurons to area 7 in the rhesus monkey. Proc Biol Sci 246:1–9PubMedCrossRefGoogle Scholar
  21. 21.
    Hof PR, Duan H, Page TL, Einstein M, Wicinski B, He Y, Erwin JM, Morrison JH (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res 928(1–2):175–186PubMedCrossRefGoogle Scholar
  22. 22.
    Hof PR, Morrison JH (2004) The ageing brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613PubMedCrossRefGoogle Scholar
  23. 23.
    Iritani S, Niizato K, Emson PC (2001) Relationship of calbindin D28K-immunoreactive cells and neuropathological changes in the hippocampal formation of Alzheimer’s disease. Neuropathology 21:162–167PubMedCrossRefGoogle Scholar
  24. 24.
    Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386(4):661–680PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study. Cereb Cortex 11(6):558–571PubMedCrossRefGoogle Scholar
  26. 26.
    Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529PubMedCrossRefGoogle Scholar
  27. 27.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486PubMedGoogle Scholar
  28. 28.
    Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Barnetson L (1996) Clustering of pathological features in Alzheimer’s disease: clinical and neuroanatomical aspects. Dementia 7:121–127PubMedCrossRefGoogle Scholar
  29. 29.
    Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353PubMedCrossRefGoogle Scholar
  30. 30.
    Ostroff JM, McDonald KL, Schneider BA, Alain C (2003) Ageing and the processing of sound duration in human auditory cortex. Hear Res 181(1–2):1–7PubMedCrossRefGoogle Scholar
  31. 31.
    Peters A, Sethares C (2002) Ageing and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 442(3):277–291PubMedCrossRefGoogle Scholar
  32. 32.
    Woolf NJ (1996) Global and serial neurons form a hierarchically arranged interface proposed to underlie memory and cognition. Neuroscience 74:625–651PubMedCrossRefGoogle Scholar
  33. 33.
    Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Steven A. Chance
    • 1
  • Manuel F. Casanova
    • 2
  • Andy E. Switala
    • 2
  • Timothy J. Crow
    • 3
  • Margaret M. Esiri
    • 1
  1. 1.Department of NeuropathologyRadcliffe InfirmaryOxfordUK
  2. 2.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA
  3. 3.SANE-POWIC CentreThe Warneford hospitalOxfordUK

Personalised recommendations