Acta Neuropathologica

, Volume 109, Issue 4, pp 387–392

Losses of chromosomes 1p and 19q are rare in pediatric oligodendrogliomas

  • Portia A. Kreiger
  • Yoshifumi Okada
  • Scott Simon
  • Lucy B. Rorke
  • David N. Louis
  • Jeffrey A. Golden
Regular Paper

Abstract

Pediatric oligodendrogliomas are rare neoplasms and have not been characterized extensively either pathologically or genetically. Given the recent interest in the significance of chromosomal losses in predicting the clinical course and in establishing uniform diagnoses of adult oligodendrogliomas, we reviewed the pathological and clinical features of a series of pediatric oligodendrogliomas and determined their 1p and 19q status using fluorescence in situ hybridization. Of 19 tumors originally diagnosed as oligodendroglioma, 7 were oligodendroglioma, 3 were anaplastic oligodendroglioma, 3 were oligoastrocytoma, and 6 were reclassified. Only one tumor, an anaplastic oligodendroglioma, had 1p loss; none had 19q loss. The single patient whose tumor had 1p loss did not have a particularly favorable clinical course. These results suggest that pediatric oligodendrogliomas arise by molecular alterations distinct from adult oligodendrogliomas, and such molecular alterations do not hold immediate promise as an adjunct to the diagnosis of pediatric oligodendrogliomas.

Keywords

Chromosome 1p Chromosome 19q Fluorescence in situ hybridization Oligodendroglioma Pediatric 

References

  1. 1.
    Bauman GS, Ino Y, Ueki K, Zlatescu MC, Fisher BJ, Macdonald DR, Stitt L, Louis DN, Cairncross JG (2000) Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int J Radiat Oncol Biol Phys 48:825–830CrossRefPubMedGoogle Scholar
  2. 2.
    Burger PC, Minn AY, Smith JS, Borell TJ, Jedlicka AE, Huntley BK, Goldthwaite PT, Jenkins RB, Feuerstein BG (2001) Losses of chromosomal arms 1p and 19q in the diagnosis of oligodendroglioma. A study of paraffin-embedded sections. Mod Pathol 14:842–853CrossRefPubMedGoogle Scholar
  3. 3.
    Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479CrossRefPubMedGoogle Scholar
  4. 4.
    Da C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925CrossRefPubMedGoogle Scholar
  5. 5.
    Dohrmann GJ, Farwell JR, Flannery JT (1978) Oligodendrogliomas in children. Surg Neurol 10:21–25Google Scholar
  6. 6.
    Ino Y, Betensky RA, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, Ramsay DA, Cairncross JG, Louis DN (2001) Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res 7:839–845PubMedGoogle Scholar
  7. 7.
    Kendler A, Golden JA (1996) Progenitor cell proliferation outside the ventricular and subventricular zones during human brain development. J Neuropathol Exp Neurol 55:1253–1258Google Scholar
  8. 8.
    Okada Y, Nishikawa R, Matsutani M, Louis DN (2002) Hypomethylated X chromosome gain and rare isochromosome 12p in diverse intracranial germ cell tumors. J Neuropathol Exp Neurol 61:531–538Google Scholar
  9. 9.
    Packer RJ, Sutton LN, Rorke LB, Zimmerman RA, Littman P, Bruce DA, Schut L (1985) Oligodendroglioma of the posterior fossa in childhood. Cancer 56:195–199Google Scholar
  10. 10.
    Pollack IF, Hamilton RL, Finkelstein SD, Campbell JW, Martinez AJ, Sherwin RN, Bozik ME, Gollin SM (1997) The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res 57:304–309Google Scholar
  11. 11.
    Pollack IF, Finkelstein SD, Burnham J, Hamilton RL, Yates AJ, Holmes EJ, Boyett JM, Finlay JL (2003) Association between chromosome 1p and 19q loss and outcome in pediatric malignant gliomas: results from the CCG-945 cohort. Pediatr Neurosurg 39:114–121CrossRefGoogle Scholar
  12. 12.
    Raghavan R, Balani J, Perry A, Margraf L, Vono MB, Cai DX, Wyatt RE, Rushing EJ, Bowers DC, Hynan LS, White CL 3rd (2003) Pediatric oligodendrogliomas: a study of molecular alterations on 1p and 19q using fluorescence in situ hybridization. J Neuropathol Exp Neurol 62:530–537Google Scholar
  13. 13.
    Razack N, Baumgartner J, Bruner J (1998) Pediatric oligodendrogliomas. Pediatr Neurosurg 28:121–129CrossRefGoogle Scholar
  14. 14.
    Sasaki H, Zlatescu MC, Betensky RA, Johnk LB, Cutone AN, Cairncross JG, Louis DN (2002) Histopathological-molecular genetic correlations in referral pathologist-diagnosed low-grade “oligodendroglioma”. J Neuropathol Exp Neurol 61:58–63Google Scholar
  15. 15.
    Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM, Kimmel D, Yates A, Burger PC, Scheithauer BW, Jenkins RB (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Portia A. Kreiger
    • 1
  • Yoshifumi Okada
    • 2
  • Scott Simon
    • 3
  • Lucy B. Rorke
    • 1
  • David N. Louis
    • 2
  • Jeffrey A. Golden
    • 1
  1. 1.Department of Pathology, Abramson Research Center, The Children’s Hospital of Philadelphia, University of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Department of Pathology, Cancer Center and Neurosurgical Service, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of Neurosurgery, The Children’s Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations