Acta Neuropathologica

, Volume 109, Issue 1, pp 32–48 | Cite as

Pathogenesis of prion diseases

  • Ursula Unterberger
  • Till Voigtländer
  • Herbert Budka
Review

Abstract

Prion diseases are rare neurological disorders that may be of genetic or infectious origin, but most frequently occur sporadically in humans. Their outcome is invariably fatal. As the responsible pathogen, prions have been implicated. Prions are considered to be infectious particles that represent mainly, if not solely, an abnormal, protease-resistant isoform of a cellular protein, the prion protein or PrPC. As in other neurodegenerative diseases, aggregates of misfolded protein conformers are deposited in the CNS of affected individuals. Pathogenesis of prion diseases comprises mainly two equally important, albeit essentially distinct, topics: first, the mode, spread, and amplification of infectivity in acquired disease, designated as peripheral pathogenesis. In this field, significant advances have implicated an essential role of lymphoid tissues for peripheral prion replication, before a likely neural spread to the CNS. The second is the central pathogenesis, dealing, in addition to spread and replication of prions within the CNS, with the mechanisms of nerve cell damage and death. Although important roles for microglial neurotoxicity, oxidative stress, and complement activation have been identified, we are far from complete understanding, and therapeutic applications in prion diseases still need to be developed.

Keywords

Prion pathogenesis Oxidative stress Microglia Immune system Peripheral nervous system 

References

  1. 1.
    Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77:762–767PubMedGoogle Scholar
  2. 2.
    Almer G, Hainfellner JA, Brücke T, Jellinger K, Kleinert R, Bayer G, Windl O, Kretzschmar HA, Hill A, Sidle K, Collinge J, Budka H (1999) Fatal familial insomnia: a new Austrian family. Brain 122:5–16CrossRefPubMedGoogle Scholar
  3. 3.
    Arendt T, Bigl V, Arendt A (1984) Neurone loss in the nucleus basalis of Meynert in Creutzfeldt-Jakob disease. Acta Neuropathol 65:85–88PubMedGoogle Scholar
  4. 4.
    Asahi M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, Taniguchi N (1995) Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem 270:21035–21039CrossRefPubMedGoogle Scholar
  5. 5.
    Aucouturier P, Geissmann F, Damotte D, Saborio GP, Meeker HC, Kascsak R, Kascsak R, Carp RI, Wisniewski T (2001) Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. J Clin Invest 108:703–708CrossRefPubMedGoogle Scholar
  6. 6.
    Baldauf E, Beekes M, Diringer H (1997) Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J Gen Virol 78:1187–1197PubMedGoogle Scholar
  7. 7.
    Bate C, Reid S, Williams A (2001) Killing of prion-damaged neurones by microglia. Neuroreport 12:2589–2594CrossRefPubMedGoogle Scholar
  8. 8.
    Beekes M, McBride PA, Baldauf E (1998) Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J Gen Virol 79:601–607PubMedGoogle Scholar
  9. 9.
    Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR (1999) Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol Dis 6:269–279CrossRefPubMedGoogle Scholar
  10. 10.
    Blättler T, Brandner S, Raeber AJ, Klein MA, Voigtländer T, Weissmann C, Aguzzi A (1997) PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389:69–73CrossRefPubMedGoogle Scholar
  11. 11.
    Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343CrossRefPubMedGoogle Scholar
  12. 12.
    Brown AR, Webb J, Rebus S, Walker R, Williams A, Fazakerley JK (2003) Inducible cytokine gene expression in the brain in the ME7/CV mouse model of scrapie is highly restricted, is at a strikingly low level relative to the degree of gliosis and occurs only late in the disease. J Gen Virol 84:2605–2611CrossRefPubMedGoogle Scholar
  13. 13.
    Brown DR (1998) Prion protein-overexpressing cells show altered response to a neurotoxic prion protein peptide. J Neurosci Res 54:331–340PubMedGoogle Scholar
  14. 14.
    Brown DR (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem 73:1105–1113CrossRefPubMedGoogle Scholar
  15. 15.
    Brown DR (2000) PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem J 352:511–518CrossRefPubMedGoogle Scholar
  16. 16.
    Brown DR, Besinger A (1998) Prion protein expression and superoxide dismutase activity. Biochem J 334:423–429PubMedGoogle Scholar
  17. 17.
    Brown DR, Sassoon J (2002) Copper-dependent functions for the prion protein. Mol Biotechnol 22:165–178Google Scholar
  18. 18.
    Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5:2057–2060PubMedGoogle Scholar
  19. 19.
    Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345–347CrossRefPubMedGoogle Scholar
  20. 20.
    Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687CrossRefPubMedGoogle Scholar
  21. 21.
    Brown DR, Schmidt B, Kretzschmar HA (1997) Effects of oxidative stress on prion protein expression in PC12 cells. Int J Dev Neurosci 15:961–972CrossRefPubMedGoogle Scholar
  22. 22.
    Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146:104–112CrossRefPubMedGoogle Scholar
  23. 23.
    Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1–5CrossRefPubMedGoogle Scholar
  24. 24.
    Brown DR, Clive C, Haswell SJ (2001) Antioxidant activity related to copper binding of native prion protein. J Neurochem 76:69–76CrossRefPubMedGoogle Scholar
  25. 25.
    Brown DR, Nicholas RSJ, Canevari L (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67:211–224Google Scholar
  26. 26.
    Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, Morrison WI, Bruce ME (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5:1308–1312Google Scholar
  27. 27.
    Bruce ME (2003) TSE strain variation. Br Med Bull 66:99–108CrossRefPubMedGoogle Scholar
  28. 28.
    Budka H (2000) Histopathology and immunohistochemistry of human transmissible spongiform encephalopathies (TSEs). Arch Virol [Suppl] 16:135–142Google Scholar
  29. 29.
    Budka H (2003) Neuropathology of prion diseases. Br Med Bull 66:121–130CrossRefPubMedGoogle Scholar
  30. 30.
    Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582CrossRefPubMedGoogle Scholar
  31. 31.
    Büeler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347CrossRefPubMedGoogle Scholar
  32. 32.
    Büeler H, Raeber A, Sailer A, Fischer M, Aguzzi A, Weissmann C (1994) High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med 1:19–30PubMedGoogle Scholar
  33. 33.
    Bürkle A, Kretzschmar HA, Brown DR (1999) Poly(ADP-ribose) immunostaining to detect apoptosis induced by a neurotoxic fragment of prion protein. Histochem J 31:711–716CrossRefPubMedGoogle Scholar
  34. 34.
    Cartier L, Verdugo R, Vergara C, Galvez S (1989) The nucleus basalis of Meynert in 20 definite cases of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 52:304–309PubMedGoogle Scholar
  35. 35.
    Choi SI, Ju WK, Choi EK, Kim J, Lea HZ, Carp RI, Wisniewski HM, Kim YS (1998) Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent. Acta Neuropathol 96:279–286CrossRefPubMedGoogle Scholar
  36. 36.
    Ciesielski-Treska J, Grant NJ, Ulrich G, Corrotte M, Bailly Y, Haeberle AM, Chasserot-Golaz S, Bader MF (2004) Fibrillar prion peptide (106–126) and scrapie prion protein hamper phagocytosis in microglia. Glia 46:101–115CrossRefPubMedGoogle Scholar
  37. 37.
    Clarke MC, Kimberlin RH (1984) Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet Microbiol 9:215–225CrossRefPubMedGoogle Scholar
  38. 38.
    Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286:331–334PubMedGoogle Scholar
  39. 39.
    Cole S, Kimberlin RH (1985) Pathogenesis of mouse scrapie: dynamics of vacuolation in brain and spinal cord after intraperitoneal infection. Neuropathol Appl Neurobiol 11:213–227PubMedGoogle Scholar
  40. 40.
    Collard CD, Väkevä A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, Buras JA, Meri S, Stahl GL (2000) Complement activation after oxidative stress. Role of the lectin complement pathway. Am J Pathol 156:1549–1556PubMedGoogle Scholar
  41. 41.
    Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297CrossRefPubMedGoogle Scholar
  42. 42.
    Collins MK, Marvel J, Malde P, Lopez-Rivas A (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med 176:1043–1051CrossRefPubMedGoogle Scholar
  43. 43.
    Corsaro A, Thellung S, Villa V, Principe DR, Paludi D, Arena S, Millo E, Schettini D, Damonte G, Aceto A, Schettini G, Florio T (2003) Prion protein fragment 106–126 induces a p38 MAP kinase-dependent apoptosis in SH-SY5Y neuroblastoma cells independently from the amyloid fibril formation. Ann N Y Acad Sci 1010:610–622Google Scholar
  44. 44.
    Cunningham C, Boche D, Perry VH (2002) Transforming growth factor β1, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol 28:107–119CrossRefPubMedGoogle Scholar
  45. 45.
    Cunningham C, Deacon R, Wells H, Boche D, Waters S, Picanco Diniz C, Scott H, Rawlins JNP, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155Google Scholar
  46. 46.
    Dorandeu A, Wingertsmann L, Chrétien F, Delisle MB, Vital C, Parchi P, Montagna P, Lugaresi E, Ironside JW, Budka H, Gambetti P, Gray F (1998) Neuronal apoptosis in fatal familial insomnia. Brain Pathol 8:531–537PubMedGoogle Scholar
  47. 47.
    Elsner J, Oppermann M, Czech W, Dobos G, Schöpf E, Norgauer J, Kapp A (1994) C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur J Immunol 24:518–522Google Scholar
  48. 48.
    Endres R, Alimzhanov MB, Plitz T, Futterer A, Kosco-Vilbois MH, Nedospasov SA, Rajewsky K, Pfeffer K (1999) Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med 189:159–168CrossRefPubMedGoogle Scholar
  49. 49.
    Falcieri E, Martelli AM, Bareggi R, Cataldi A, Cocco L (1993) The protein kinase inhibitor staurosporine induces morphological changes typical of apoptosis in MOLT-4 cells without concomitant DNA fragmentation. Biochem Biophys Res Commun 193:19–25CrossRefPubMedGoogle Scholar
  50. 50.
    Ferrer I (1999) Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis? Acta Neuropathol 97:5–12CrossRefPubMedGoogle Scholar
  51. 51.
    Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546CrossRefPubMedGoogle Scholar
  52. 52.
    Fukuda K, Kojiro M, Chiu JF (1993) Demonstration of extensive chromatin cleavage in transplanted Morris hepatoma 7777 tissue: apoptosis or necrosis? Am J Pathol 142:935–946PubMedGoogle Scholar
  53. 53.
    Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49:171–186Google Scholar
  54. 54.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefPubMedGoogle Scholar
  55. 55.
    Giese A, Groschup MH, Hess B, Kretzschmar HA (1995) Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5:213–221PubMedGoogle Scholar
  56. 56.
    Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol 8:449–457PubMedGoogle Scholar
  57. 57.
    Giese A, Kretzschmar HA (2001) Prion-induced neuronal damage—the mechanisms of neuronal destruction in the subacute spongiform encephalopathies. Curr Top Microbiol Immunol 253:203–217PubMedGoogle Scholar
  58. 58.
    Glatzel M, Heppner FL, Albers KM, Aguzzi A (2001) Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31:25–34CrossRefPubMedGoogle Scholar
  59. 59.
    Gonzalez M, Mackay F, Browning JL, Kosco-Vilbois MH, Noelle RJ (1998) The sequential role of lymphotoxin and B cells in the development of splenic follicles. J Exp Med 187:997–1007CrossRefPubMedGoogle Scholar
  60. 60.
    Gray F, Chretien F, Adle-Biassette H, Dorandeu A, Ereau T, Delisle MB, Kopp N, Ironside JW, Vital C (1999) Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 58:321–328PubMedGoogle Scholar
  61. 61.
    Guentchev M, Hainfellner JA, Trabattoni GR, Budka H (1997) Distribution of parvalbumin-immunoreactive neurons in brain correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 56:1119–1124PubMedGoogle Scholar
  62. 62.
    Guentchev M, Groschup MH, Kordek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8:615–623PubMedGoogle Scholar
  63. 63.
    Guentchev M, Wanschitz J, Voigtländer T, Flicker H, Budka H (1999) Selective neuronal vulnerability in human prion diseases. Fatal familial insomnia differs from other types of prion diseases. Am J Pathol 155:1453–1457PubMedGoogle Scholar
  64. 64.
    Guentchev M, Voigtländer T, Haberler C, Groschup MH, Budka H (2000) Evidence for oxidative stress in experimental prion disease. Neurobiol Dis 7:270–273CrossRefPubMedGoogle Scholar
  65. 65.
    Guentchev M, Siedlak SL, Jarius C, Tagliavini F, Castellani RJ, Perry G, Smith MA, Budka H (2002) Oxidative damage to nucleic acids in human prion disease. Neurobiol Dis 9:275–281CrossRefPubMedGoogle Scholar
  66. 66.
    Hainfellner JA, Budka H (1999) Disease associated prion protein may deposit in the peripheral nervous system in human transmissible spongiform encephalopathies. Acta Neuropathol 98:458–460CrossRefPubMedGoogle Scholar
  67. 67.
    Hay B, Barry RA, Lieberburg I, Prusiner SB, Lingappa VR (1987) Biogenesis and transmembrane orientation of the cellular isoform of the scrapie prion protein. Mol Cell Biol 7:914–920PubMedGoogle Scholar
  68. 68.
    Hay B, Prusiner SB, Lingappa VR (1987) Evidence for a secretory form of the cellular prion protein. Biochemistry 26:8110–8115PubMedGoogle Scholar
  69. 69.
    Head MW, Ritchie D, Smith N, McLoughlin V, Nailon W, Samad S, Masson S, Bishop M, McCardle L, Ironside JW (2004) Peripheral tissue involvement in sporadic, iatrogenic, and variant Creutzfeldt-Jakob disease: an immunohistochemical, quantitative, and biochemical study. Am J Pathol 164:143–153PubMedGoogle Scholar
  70. 70.
    Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834CrossRefPubMedGoogle Scholar
  71. 71.
    Hegde RS, Tremblay P, Groth D, DeArmond SJ, Prusiner SB, Lingappa VR (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402:822–826CrossRefPubMedGoogle Scholar
  72. 72.
    Heppner FL, Christ AD, Klein MA, Prinz M, Fried M, Kraehenbuhl JP, Aguzzi A (2001) Transepithelial prion transport by M cells. Nat Med 7:976–977Google Scholar
  73. 73.
    Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445CrossRefPubMedGoogle Scholar
  74. 74.
    Hill AF, Butterworth RJ, Joiner S, Jackson G, Rossor MN, Thomas DJ, Frosh A, Tolley N, Bell JE, Spencer M, King A, Al-Sarraj S, Ironside JW, Lantos PL, Collinge J (1999) Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353:183–189CrossRefPubMedGoogle Scholar
  75. 75.
    Hill AF, Joiner S, Wadsworth JDF, Sidle KCL, Bell JE, Budka H, Ironside JW, Collinge J (2003) Molecular classification of sporadic Creutzfeldt-Jakob disease. Brain 126:1333–1346CrossRefPubMedGoogle Scholar
  76. 76.
    Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207:621–629CrossRefPubMedGoogle Scholar
  77. 77.
    Huang FP, Farquhar CF, Mabbott NA, Bruce ME, MacPherson GG (2002) Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J Gen Virol 83:267–271PubMedGoogle Scholar
  78. 78.
    Ishii T, Haga S, Yagishita S, Tateishi J (1984) The presence of complements in amyloid plaques of Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. Appl Pathol 2:370–379PubMedGoogle Scholar
  79. 79.
    Jeffrey M, McGovern G, Goodsir CM, Brown KL, Bruce ME (2000) Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J Pathol 191:323–332CrossRefPubMedGoogle Scholar
  80. 80.
    Jeffrey M, Goodsir CM, Race RE, Chesebro B (2004) Scrapie-specific neuronal lesions are independent of neuronal PrP expression. Ann Neurol 55:781–792CrossRefPubMedGoogle Scholar
  81. 81.
    Jendroska K, Heinzel FP, Torchia M, Stowring L, Kretzschmar HA, Kon A, Stern A, Prusiner SB, DeArmond SJ (1991) Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 41:1482–1490PubMedGoogle Scholar
  82. 82.
    Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E (1997) Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952CrossRefPubMedGoogle Scholar
  83. 83.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedGoogle Scholar
  84. 84.
    Kimberlin RH, Hall SM, Walker CA (1983) Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J Neurol Sci 61:315–325CrossRefPubMedGoogle Scholar
  85. 85.
    Kitamoto T, Muramoto T, Mohri S, Doh-Ura K, Tateishi J (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 65:6292–6295PubMedGoogle Scholar
  86. 86.
    Klein MA, Frigg R, Flechsig E, Raeber AJ, Kalinke U, Bluethmann H, Bootz F, Suter M, Zinkernagel RM, Aguzzi A (1997) A crucial role for B cells in neuroinvasive scrapie. Nature 390:687–690PubMedGoogle Scholar
  87. 87.
    Klein MA, Frigg R, Raeber AJ, Flechsig E, Hegyi I, Zinkernagel RM, Weissmann C, Aguzzi A (1998) PrP expression in B lymphocytes is not required for prion neuroinvasion. Nat Med 4:1429–1433Google Scholar
  88. 88.
    Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, Carroll MC, Verbeek JS, Botto M, Walport MJ, Molina H, Kalinke U, Acha-Orbea H, Aguzzi A (2001) Complement facilitates early prion pathogenesis. Nat Med 7:488–492Google Scholar
  89. 89.
    Koperek O, Kovacs GG, Ritchie D, Ironside JW, Budka H, Wick G (2002) Disease-associated prion protein in vessel walls. Am J Pathol 161:1979–1984PubMedGoogle Scholar
  90. 90.
    Kordek R, Hainfellner JA, Liberski PP, Budka H (1999) Deposition of the prion protein (PrP) during the evolution of experimental Creutzfeldt-Jakob disease. Acta Neuropathol 98:597–602CrossRefPubMedGoogle Scholar
  91. 91.
    Kovacs GG, Voigtländer T, Hainfellner JA, Budka H (2002) Distribution of intraneuronal immunoreactivity for the prion protein in human prion diseases. Acta Neuropathol 104:320–326PubMedGoogle Scholar
  92. 92.
    Kovacs GG, Zerbi P, Voigtländer T, Strohschneider M, Trabattoni G, Hainfellner JA, Budka H (2002) The prion protein in human neurodegenerative disorders. Neurosci Lett 329:269–272Google Scholar
  93. 93.
    Kovacs GG, Gasque P, Ströbel T, Lindeck-Pozza E, Strohschneider M, Ironside JW, Budka H, Guentchev M (2004) Complement activation in human prion disease. Neurobiol Dis 15:21–28CrossRefPubMedGoogle Scholar
  94. 94.
    Kovacs GG, Preusser M, Strohschneider M, Budka H (2004) Subcellular localization of disease associated prion protein in the human brain. Am J Pathol (in press)Google Scholar
  95. 95.
    Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122:1–5Google Scholar
  96. 96.
    Kunzi V, Glatzel M, Nakano MY, Greber UF, Van Leuven F, Aguzzi A (2002) Unhampered prion neuroinvasion despite impaired fast axonal transport in transgenic mice overexpressing four-repeat tau. J Neurosci 22:7471–7477Google Scholar
  97. 97.
    Lee DW, Sohn HO, Lim HB, Lee YG, Kim YS, Carp RI, Wisniewski HM (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res 30:499–507PubMedGoogle Scholar
  98. 98.
    Legname G, Baskakov IV, Nguyen HOB, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676CrossRefPubMedGoogle Scholar
  99. 99.
    Liberski PP, Sikorska B, Bratosiewicz-Wasik J, Gajdusek DC, Brown P (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36:2473–2490CrossRefPubMedGoogle Scholar
  100. 100.
    Mabbott NA, Williams A, Farquhar CF, Pasparakis M, Kollias G, Bruce ME (2000) Tumor necrosis factor alpha-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J Virol 74:3338–3344CrossRefPubMedGoogle Scholar
  101. 101.
    Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB (2001) Temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat Med 7:485–487Google Scholar
  102. 102.
    Mallucci GR, Ratté S, Asante EA, Linehan J, Gowland I, Jefferys JGR, Collinge J (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210CrossRefPubMedGoogle Scholar
  103. 103.
    Mallucci G, Dickinson A, Linehan J, Klöhn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874CrossRefPubMedGoogle Scholar
  104. 104.
    Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8:121–127PubMedGoogle Scholar
  105. 105.
    Manson JC, Clarke AR, McBride PA, McConnell I, Hope J (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3:331–340PubMedGoogle Scholar
  106. 106.
    Matsumoto M, Fu YX, Molina H, Huang G, Kim J, Thomas DA, Nahm MH, Chaplin DD (1997) Distinct roles of lymphotoxin alpha and the type I tumor necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J Exp Med 186:1997–2004CrossRefPubMedGoogle Scholar
  107. 107.
    McBride PA, Beekes M (1999) Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neurosci Lett 265:135–138Google Scholar
  108. 108.
    McMahon HEM, Mangé A, Nishida N, Créminon C, Casanova D, Lehmann S (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 276:2286–2291CrossRefPubMedGoogle Scholar
  109. 109.
    Mohri S, Handa S, Tateishi J (1987) Lack of effect of thymus and spleen on the incubation period of Creutzfeldt-Jakob disease in mice. J Gen Virol 68:1187–1189PubMedGoogle Scholar
  110. 110.
    Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, Weissmann C (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259CrossRefPubMedGoogle Scholar
  111. 111.
    Moore RC, Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, Karunaratne A, Pasternak SH, Chishti MA, Liang Y, Mastrangelo P, Wang K, Smit AF, Katamine S, Carlson GA, Cohen FE, Prusiner SB, Melton DW, Tremblay P, Hood LE, Westaway D (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 292:797–817PubMedGoogle Scholar
  112. 112.
    O’Donovan CN, Tobin D, Cotter TG (2001) Prion protein fragment PrP-(106–126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J Biol Chem 276:43516–43523CrossRefPubMedGoogle Scholar
  113. 113.
    Ookawara T, Kawamura N, Kitagawa Y, Taniguchi N (1992) Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem 267:18505–18510PubMedGoogle Scholar
  114. 114.
    Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233CrossRefPubMedGoogle Scholar
  115. 115.
    Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273:33107–33110CrossRefPubMedGoogle Scholar
  116. 116.
    Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15:349–354CrossRefPubMedGoogle Scholar
  117. 117.
    Peyrin JM, Lasmézas CI, Haïk S, Tagliavini F, Salmona M, Williams A, Richie D, Deslys JP, Dormont D (1999) Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10:723–729PubMedGoogle Scholar
  118. 118.
    Prinz M, Montrasio F, Klein MA, Schwarz P, Priller J, Odermatt B, Pfeffer K, Aguzzi A (2002) Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc Natl Acad Sci USA 99:919–924Google Scholar
  119. 119.
    Prinz M, Huber G, Macpherson AJ, Heppner FL, Glatzel M, Eugster HP, Wagner N, Aguzzi A (2003) Oral prion infection requires normal numbers of Peyer’s patches but not of enteric lymphocytes. Am J Pathol 162:1103–1111PubMedGoogle Scholar
  120. 120.
    Prinz M, Montrasio F, Furukawa H, Haar ME van der, Schwarz P, Rülicke T, Giger OT, Häusler KG, Perez D, Glatzel M, Aguzzi A (2004) Intrinsic resistance of oligodendrocytes to prion infection. J Neurosci 24:5974–5981Google Scholar
  121. 121.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383CrossRefPubMedGoogle Scholar
  122. 122.
    Qin K, Yang DS, Yang Y, Chishti MA, Meng LJ, Kretzschmar HA, Yip CM, Fraser PE, Westaway D (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275:19121–19131CrossRefPubMedGoogle Scholar
  123. 123.
    Quaglio E, Chiesa R, Harris DA (2001) Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie isoform. J Biol Chem 276:11432–11438CrossRefPubMedGoogle Scholar
  124. 124.
    Race RE, Priola SA, Bessen RA, Ernst D, Dockter J, Rall GF, Mucke L, Chesebro B, Oldstone MB (1995) Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron 15:1183–1191CrossRefPubMedGoogle Scholar
  125. 125.
    Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H, Lehmann S, Favier A (2003) Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278:9064–9072CrossRefPubMedGoogle Scholar
  126. 126.
    Raeber AJ, Race RE, Brandner S, Priola SA, Sailer A, Bessen RA, Mucke L, Manson J, Aguzzi A, Oldstone MBA, Weissmann C, Chesebro B (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16:6057–6065CrossRefPubMedGoogle Scholar
  127. 127.
    Raffray M, Cohen GM (1997) Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol Ther 75:153–177CrossRefPubMedGoogle Scholar
  128. 128.
    Rossi D, Cozzio A, Flechsig E, Klein MA, Rülicke T, Aguzzi A, Weissmann C (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 20:694–702PubMedGoogle Scholar
  129. 129.
    Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380:528–531PubMedGoogle Scholar
  130. 130.
    Sasaki A, Hirato J, Nakazato Y (1993) Immunohistochemical study of microglia in the Creutzfeldt-Jakob diseased brain. Acta Neuropathol 86:337–344CrossRefPubMedGoogle Scholar
  131. 131.
    Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1–20Google Scholar
  132. 132.
    Schätzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, Mobley WC, Prusiner SB (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71:8821–8831PubMedGoogle Scholar
  133. 133.
    Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36:2563–2573CrossRefPubMedGoogle Scholar
  134. 134.
    Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106CrossRefPubMedGoogle Scholar
  135. 135.
    Stewart RS, Harris DA (2001) Most pathogenic mutations do not alter the membrane topology of the prion protein. J Biol Chem 276:2212–2220CrossRefPubMedGoogle Scholar
  136. 136.
    Stewart RS, Harris DA (2003) Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection. J Biol Chem 278:45960–45968CrossRefPubMedGoogle Scholar
  137. 137.
    Stewart RS, Drisaldi B, Harris DA (2001) A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell 12:881–889PubMedGoogle Scholar
  138. 138.
    Thackray AM, Knight R, Haswell SJ, Bujdoso R, Brown DR (2002) Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J 362:253–258CrossRefPubMedGoogle Scholar
  139. 139.
    Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rülicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–642CrossRefPubMedGoogle Scholar
  140. 140.
    Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Copper-dependent generation of hydrogen peroxide from the toxic prion protein fragment PrP106–126. Neurosci Lett 336:159–162Google Scholar
  141. 141.
    Van Keulen LJ, Schreuder BE, Meloen RH, Mooij-Harkes G, Vromans M, Langeveld JP (1996) Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J Clin Microbiol 34:1228–1231PubMedGoogle Scholar
  142. 142.
    Van Rheede T, Smolenaars MMW, Madsen O, Jong WW de (2003) Molecular evolution of the mammalian prion protein. Mol Biol Evol 20:111–121CrossRefPubMedGoogle Scholar
  143. 143.
    Vogt W, Damerau B, Zabern I von, Nolte R, Brunahl D (1989) Non-enzymic activation of the fifth component of human complement, by oxygen radicals. Some properties of the activation product, C5b-like C5. Mol Immunol 26:1133–1142Google Scholar
  144. 144.
    Voigtländer T, Klöppel S, Birner P, Jarius C, Flicker H, Verghese-Nikolakaki S, Sklaviadis T, Guentchev M, Budka H (2001) Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol 101:417–423Google Scholar
  145. 145.
    Wells GA, Dawson M, Hawkins SA, Green RB, Dexter I, Francis ME, Simmons MM, Austin AR, Horigan MW (1994) Infectivity in the ileum of cattle challenged orally with bovine spongiform encephalopathy. Vet Rec 135:40–41PubMedGoogle Scholar
  146. 146.
    White AR, Collins SJ, Maher F, Jobling MF, Stewart LR, Thyer JM, Beyreuther K, Masters CL, Cappai R (1999) Prion protein-deficient neurons reveal lower glutathione reductase activity and increased susceptibility to hydrogen peroxide toxicity. Am J Pathol 155:1723–1730PubMedGoogle Scholar
  147. 147.
    White AR, Guirguis R, Brazier MW, Jobling MF, Hill AF, Beyreuther K, Barrow CJ, Masters CL, Collins SJ, Cappai R (2001) Sublethal concentrations of prion peptide PrP106–126 or the amyloid beta peptide of Alzheimer’s disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol Dis 8:299–316CrossRefPubMedGoogle Scholar
  148. 148.
    Williams AE, Lawson LJ, Perry VH, Fraser H (1994) Characterization of the microglial response in murine scrapie. Neuropathol Appl Neurobiol 20:47–55PubMedGoogle Scholar
  149. 149.
    Williams A, Lucassen PJ, Ritchie D, Bruce M (1997) PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol 144:433–438CrossRefPubMedGoogle Scholar
  150. 150.
    Williams A, Van Dam AM, Ritchie D, Eikelenboom P, Fraser H (1997) Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 754:171–180CrossRefPubMedGoogle Scholar
  151. 151.
    Wong BS, Brown DR, Pan T, Whiteman M, Liu T, Bu X, Li R, Gambetti P, Olesik J, Rubenstein R, Sy MS (2001) Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. J Neurochem 79:689–698CrossRefPubMedGoogle Scholar
  152. 152.
    Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, Li R, Gambetti P, Sy MS, Brown DR (2001) Aberrant metal binding by prion protein in human prion disease. J Neurochem 78:1400–1408CrossRefPubMedGoogle Scholar
  153. 153.
    Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ursula Unterberger
    • 1
  • Till Voigtländer
    • 1
  • Herbert Budka
    • 1
  1. 1.Institute of NeurologyMedical University of Vienna, AKHViennaAustria

Personalised recommendations