Acta Neuropathologica

, Volume 107, Issue 3, pp 272–276 | Cite as

Glioblastoma cells release factors that disrupt blood-brain barrier features

  • Stefan W. Schneider
  • Thomas Ludwig
  • Lars Tatenhorst
  • Stephan Braune
  • Hans Oberleithner
  • Volker Senner
  • Werner PaulusEmail author
Regular Paper


The blood-brain barrier (BBB), mediated by endothelial tight junctions, is defective in malignant gliomas such as glioblastoma, resulting in cerebral edema and contrast enhancement upon neuroradiological examination. The mechanisms underlying BBB breakdown are essentially unknown. Since non-neoplastic astrocytes are required to induce BBB features of cerebral endothelial cells, it is conceivable that malignant astrocytes have lost this ability due to dedifferentiation. Alternatively, glioma cells might actively degrade previously intact BBB tight junctions. To examine the latter hypothesis, we have employed a transepithelial electrical resistance breakdown assay using monolayers of the C7 subclone of Madin-Darby canine kidney (MDCK-C7) cells forming tight junctions similar to those of BBB endothelial cells. We found that glioblastoma primary cells co-cultured with the MDCK-C7 monolayer (without direct contact of the two cell types) resulted in marked breakdown of electrical resistance, whereas primary cultures derived from low-grade gliomas (fibrillary astrocytoma, oligoastrocytoma) showed delayed or no effects. These results suggest that malignant gliomas have acquired the ability to actively degrade tight junctions by secreting soluble factors, eventually leading to BBB disruption within invaded brain tissue.


Glioma Transepithelial electrical resistance Blood-brain barrier Permeability Cell culture model 



This study was supported by grant Pa 328/5 from Deutsche Forschungsgemeinschaft.


  1. 1.
    Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638CrossRefPubMedGoogle Scholar
  2. 2.
    Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L (1997) Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 21:41–49PubMedGoogle Scholar
  3. 3.
    Binder DK, Berger MS (2000) Proteases and the biology of glioma invasion. J Neurooncol 56:149–158CrossRefGoogle Scholar
  4. 4.
    Descamps L, Coisne C, Dehouck B, Cecchelli R, Torpier G (2003) Protective effect of glial cells against lipopolysaccharide-mediated blood-brain barrier injury. Glia 42:46–58CrossRefPubMedGoogle Scholar
  5. 5.
    Dinda AK, Sarkar C, Roy S, Kharbanda K, Mathur M, Khosla AK, Banerji AK (1993) A transmission and scanning electron microscopic study of tumoral and peritumoral microblood vessels in human gliomas. J Neurooncol 16:149–158PubMedGoogle Scholar
  6. 6.
    Engelhard HH, Groothuis DG (1999) The blood-brain barrier: structure, function, and response to neoplasia. In: Berger MD, Wilson CB (eds) Gliomas. Saunders, Philadelphia, pp 115–121Google Scholar
  7. 7.
    Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney cells. J Cell Biol 153:263–272CrossRefPubMedGoogle Scholar
  8. 8.
    Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257PubMedGoogle Scholar
  9. 9.
    Jiang WG, Martin TA, Matsumoto K, Nakamura T, Mansel RE (1999) Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistance (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol 181:319–329CrossRefPubMedGoogle Scholar
  10. 10.
    Kleihues P, Cavenee WK (2000) World Health Organization classification of tumours. Pathology and genetics. Tumours of the nervous system. WHO, LyonGoogle Scholar
  11. 11.
    Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76CrossRefPubMedGoogle Scholar
  12. 12.
    Lamszus K, Laterra J, Westphal M, Rosen EM (1999) Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci 17:517–530CrossRefPubMedGoogle Scholar
  13. 13.
    Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900–906CrossRefPubMedGoogle Scholar
  14. 14.
    Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331PubMedGoogle Scholar
  15. 15.
    Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9CrossRefPubMedGoogle Scholar
  16. 16.
    Ludwig T, Ossig R, Graessel S, Wilhelmi M, Oberleithner H, Schneider SW (2002) The electrical resistance breakdown assay determines the role of proteinases in tumor cell invasion. Am J Physiol Renal Physiol 283:F319–F327PubMedGoogle Scholar
  17. 17.
    Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120CrossRefPubMedGoogle Scholar
  18. 18.
    Machein MR, Kullmer J, Fiebich BL, Plate KH, Warnke PC (1999) Vascular endothelial growth factor expression, vascular volume, and capillary permeability in human brain tumors. Neurosurgery 44:732–740PubMedGoogle Scholar
  19. 19.
    Mun-Bryce S, Rosenberg GA (1998) Gelatinase B modulates selective opening of the blood-brain barrier during inflammation. Am J Physiol 274: R1203–R1211PubMedGoogle Scholar
  20. 20.
    Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660CrossRefPubMedGoogle Scholar
  21. 21.
    Nuttall RK, Pennington CJ, Taplin J, Wheal A, Yong VW, Forsyth PA, Edwards DR (2003) Elevated membrane-type matrix metalloproteinases in gliomas revealed by profiling proteases and inhibitors in human cancer cells. Mol Cancer Res 1:333–345PubMedGoogle Scholar
  22. 22.
    Papadopoulos MC, Saadoun S, Davies DC, Bell BA (2001) Emerging molecular mechanisms of brain tumour oedema. Br J Neurosurg 15:101–108CrossRefPubMedGoogle Scholar
  23. 23.
    Papadopoulos MC, Saadoun S, Woodrow CJ, Davies DC, Costa-Martins P, Moss RF, Krishna S, Bell BA (2001) Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol 27:384–395CrossRefPubMedGoogle Scholar
  24. 24.
    Pietsch T, Valter MM, Wolf HK, Deimling A von, Huang HJ, Cavenee WK, Wiestler OD (1997) Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol 93:109–117CrossRefPubMedGoogle Scholar
  25. 25.
    Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol 21:891–899PubMedGoogle Scholar
  26. 26.
    Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28PubMedGoogle Scholar
  27. 27.
    Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T, Koono M, Wakisaka S (2000) Expression of emmprin (CD147), a cell surface inducer of matrix metalloproteinases, in normal human brain and gliomas. Int J Cancer 88:21–27CrossRefPubMedGoogle Scholar
  28. 28.
    Sawada T, Kato Y, Kobayashi M, Takekekawa Y (2000) Immunohistochemical study of tight junction-related protein in neovasculature in astrocytic tumor. Brain Tumor Pathol 17:1–6CrossRefPubMedGoogle Scholar
  29. 29.
    Seitz RJ, Wechsler W (1987) Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropathol 73:145–152Google Scholar
  30. 30.
    Veronesi B (1996) Characterization of the MDCK cell line for screening neurotoxicants. Neurotoxicology 17:433–443PubMedGoogle Scholar
  31. 31.
    Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition, and regulation. Vascul Pharmacol 38:323–337CrossRefPubMedGoogle Scholar
  32. 32.
    Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592PubMedGoogle Scholar
  33. 33.
    Wunsch S, Gekle M, Kersting U, Schuricht B, Oberleithner H (1995) Phenotypically and karyotypically distinct Madin-Darby canine kidney cell clones respond differently to alkaline stress. J Cell Physiol 164:164–171PubMedGoogle Scholar
  34. 34.
    Zak J, Schneider SW, Eue I, Ludwig T, Oberleithner H (2000) High-resistance MDCK-C7 monolayers used for measuring invasive potency of tumour cells. Pflugers Arch 440:179–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Stefan W. Schneider
    • 1
    • 3
  • Thomas Ludwig
    • 1
  • Lars Tatenhorst
    • 2
  • Stephan Braune
    • 2
  • Hans Oberleithner
    • 1
  • Volker Senner
    • 2
  • Werner Paulus
    • 2
    Email author
  1. 1.Institute of Physiology—NanolabUniversity Hospital MünsterMünsterGermany
  2. 2.Institute of NeuropathologyUniversity Hospital MünsterMünsterGermany
  3. 3.Department of DermatologyUniversity of MünsterMünsterGermany

Personalised recommendations