Advertisement

Herzschrittmachertherapie + Elektrophysiologie

, Volume 29, Issue 4, pp 377–382 | Cite as

Transvenöse Neurostimulation bei herzinsuffizienzassoziierter zentraler Schlafapnoe

  • Christoph Stellbrink
  • Bert Hansky
  • Philipp Baumann
  • Dennis Lawin
Schwerpunkt
  • 43 Downloads

Zusammenfassung

Schlafbezogene Atemstörungen können als obstruktive (OSA) und zentrale Schlafapnoe (CSA) klassifiziert werden. Während für Pathophysiologie, diagnostisches Vorgehen und Therapie bei OSA heute schon weitreichende Erkenntnisse bzw. Empfehlungen vorliegen, ist die Entstehung der CSA noch nicht vollständig verstanden, die Patientenidentifikation oft schwierig und die Notwendigkeit einer spezifischen Therapie umstritten. Die CSA tritt häufig als Begleitsymptom bei Herzinsuffizienz auf und ist mit einer schlechten Prognose assoziiert. Eine optimale Herzinsuffizienztherapie führt zu einer Reduktion der CSA und ist daher von zentraler Bedeutung in der Therapie. Im Gegensatz zur OSA kann durch eine nichtinvasive Beatmungstherapie die Prognose der Patienten mit CSA nicht verbessert werden; unter ASV-Beatmung (adaptive, druckunterstützte Servoventilation) kam es sogar zu einer erhöhten Sterblichkeit. Als neues Therapieverfahren befindet sich die transvenöse Neurostimulation des N. phrenicus über einen implantierbaren Schrittmacher in der klinischen Erprobung. Erste Ergebnisse weisen auf positive Effekte hinsichtlich der Schlafapnoe-Parameter und der Lebensqualität hin, ohne dass es bisher Hinweise auf eine negative Beeinflussung der Mortalität gibt. Allerdings müssen vor einer breiten klinischen Anwendung weitere Studiendaten an größeren Patientenkollektiven abgewartet werden.

Schlüsselwörter

Schlafbezogene Atemstörungen Nichtinvasive Beatmung N. phrenicus Schrittmacher Cheyne-Stokes-Atmung 

Transvenous neurostimulation in central sleep apnea associated with heart failure

Abstract

Sleep-related breathing disorders can be classified as either obstructive (OSA) or central sleep apnea (CSA). Whereas there is substantial knowledge about the pathophysiology and sound recommendations for the diagnosis and treatment of OSA, the origin of CSA is still incompletely understood, patient identification is difficult and the necessity for specific treatment is under debate. CSA often accompanies heart failure and is associated with an adverse prognosis. Optimized heart failure treatment reduces CSA and is thus the cornerstone of CSA treatment. In contrast to OSA, noninvasive ventilation does not lead to prognostic improvement in CSA and ASV ventilation may even lead to an increase in mortality. Transvenous neurostimuation of the phrenic nerve is currently under clinical investigation as a new therapeutic modality for CSA. Early results demonstrate positive effects on sleep parameters and quality of life without any evidence for a negative impact on mortality. However, these results await confirmation in larger studies before this new approach can be advocated for routine clinical use.

Keywords

Sleep-related breathing disorders Noninvasive ventilation Phrenic nerve Pacemaker Cheyne-Stokes respiration 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Stellbrink hat für Tätigkeiten im Rahmen klinischer Studien und für Beratungstätigkeit Honorare von der Fa. Respicardia erhalten. B. Hansky, P. Baumann und D. Lawin geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abraham WT, Jagielski D, Oldenburg O et al (2015) Phrenic nerve stimulation for the treatment of central sleep apnea. Jacc Heart Fail 3:360–369.  https://doi.org/10.1016/j.jchf.2014.12.013 CrossRefPubMedGoogle Scholar
  2. 2.
    Arzt M, Wensel R, Montalvan S et al (2008) Effects of dynamic bilevel positive airway pressure support on central sleep apnea in men with heart failure. Chest 134:61–66.  https://doi.org/10.1378/chest.07-1620 CrossRefPubMedGoogle Scholar
  3. 3.
    Arzt M, Woehrle H, Oldenburg O et al (2016) Prevalence and predictors of sleep-disordered breathing in patients with stable chronic heart failure: the SchlaHF registry. Jacc Heart Fail 4:116–125.  https://doi.org/10.1016/j.jchf.2015.09.014 CrossRefPubMedGoogle Scholar
  4. 4.
    Badr MS, Toiber F, Skatrud JB, Dempsey J (1995) Pharyngeal narrowing/occlusion during central sleep apnea. J Appl Physiol 78:1806–1815.  https://doi.org/10.1152/jappl.1995.78.5.1806 CrossRefPubMedGoogle Scholar
  5. 5.
    Becker HF, Jerrentrup A, Ploch T et al (2003) Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation 107:68–73CrossRefGoogle Scholar
  6. 6.
    Brack T, Jubran A, Laghi F, Tobin MJ (2005) Fluctuations in end-expiratory lung volume during Cheyne-Stokes respiration. Am J Respir Crit Care Med 171:1408–1413.  https://doi.org/10.1164/rccm.200503-409OC CrossRefPubMedGoogle Scholar
  7. 7.
    Bradley TD, Logan AG, Kimoff RJ et al (2005) Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med 353:2025–2033.  https://doi.org/10.1056/NEJMoa051001 CrossRefPubMedGoogle Scholar
  8. 8.
    Christou K, Markoulis N, Moulas AN et al (2003) Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath 7:105–110.  https://doi.org/10.1007/s11325-003-0105-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Ciftci TU, Kokturk O, Bukan N, Bilgihan A (2004) The relationship between serum cytokine levels with obesity and obstructive sleep apnea syndrome. Cytokine 28:87–91.  https://doi.org/10.1016/j.cyto.2004.07.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Combes N, Jaffuel D, Cayla G et al (2014) Pressure-dependent hemodynamic effect of continuous positive airway pressure in severe chronic heart failure: a case series. Int J Cardiol 171:e104–e105.  https://doi.org/10.1016/j.ijcard.2013.12.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Commissioner O of the Press Announcements (2017) FDA approves implantable device to treat moderate to severe central sleep apnea. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm579506.htm. Zugegriffen: 2. Sept. 2018Google Scholar
  12. 12.
    Costanzo MR, Augostini R, Goldberg LR et al (2015) Design of the remedé system pivotal trial: a prospective, randomized study in the use of respiratory rhythm management to treat central sleep apnea. J Card Fail 21:892–902.  https://doi.org/10.1016/j.cardfail.2015.08.344 CrossRefPubMedGoogle Scholar
  13. 13.
    Costanzo MR, Ponikowski P, Javaheri S et al (2016) Transvenous neurostimulation for central sleep apnoea: a randomised controlled trial. Lancet 388:974–982.  https://doi.org/10.1016/S0140-6736(16)30961-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Costanzo MR, Ponikowski P, Javaheri S et al (2018) Sustained 12 month benefit of phrenic nerve stimulation for central sleep apnea. Am J Cardiol 121:1400–1408.  https://doi.org/10.1016/j.amjcard.2018.02.022 CrossRefPubMedGoogle Scholar
  15. 15.
    Cowie MR, Woehrle H, Wegscheider K et al (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373:1095–1105.  https://doi.org/10.1056/NEJMoa1506459 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cowie MR, Woehrle H, Wegscheider K et al (2018) Adaptive servo-ventilation for central sleep apnoea in systolic heart failure: results of the major substudy of SERVE-HF. Eur J Heart Fail 20:536–544.  https://doi.org/10.1002/ejhf.1048 CrossRefPubMedGoogle Scholar
  17. 17.
    Eulenburg C, Wegscheider K, Woehrle H et al (2016) Mechanisms underlying increased mortality risk in patients with heart failure and reduced ejection fraction randomly assigned to adaptive servoventilation in the SERVE-HF study: results of a secondary multistate modelling analysis. Lancet Respir Med 4:873–881.  https://doi.org/10.1016/S2213-2600(16)30244-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Findley L, Smith C, Hooper J et al (2000) Treatment with nasal CPAP decreases automobile accidents in patients with sleep apnea. Am J Respir Crit Care Med 161:857–859.  https://doi.org/10.1164/ajrccm.161.3.9812154 CrossRefPubMedGoogle Scholar
  19. 19.
    Gottlieb DJ, Yenokyan G, Newman AB et al (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 122:352–360.  https://doi.org/10.1161/CIRCULATIONAHA.109.901801 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hall MJ, Xie A, Rutherford R et al (1996) Cycle length of periodic breathing in patients with and without heart failure. Am J Respir Crit Care Med 154:376–381.  https://doi.org/10.1164/ajrccm.154.2.8756809 CrossRefPubMedGoogle Scholar
  21. 21.
    Jagielski D, Ponikowski P, Augostini R et al (2016) Transvenous stimulation of the phrenic nerve for the treatment of central sleep apnoea: 12 months’ experience with the remedé® System. Eur J Heart Fail 18:1386–1393.  https://doi.org/10.1002/ejhf.593 CrossRefPubMedGoogle Scholar
  22. 22.
    Javaheri S (1999) A mechanism of central sleep apnea in patients with heart failure. N Engl J Med 341:949–954.  https://doi.org/10.1056/NEJM199909233411304 CrossRefPubMedGoogle Scholar
  23. 23.
    Javaheri S (2000) Effects of continuous positive airway pressure on sleep apnea and ventricular irritability in patients with heart failure. Circulation 101:392–397CrossRefGoogle Scholar
  24. 24.
    Javaheri S, Shukla R, Zeigler H, Wexler L (2007) Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol 49:2028–2034.  https://doi.org/10.1016/j.jacc.2007.01.084 CrossRefPubMedGoogle Scholar
  25. 25.
    Jenkinson C, Davies RJ, Mullins R, Stradling JR (1999) Comparison of therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised prospective parallel trial. Lancet 353:2100–2105.  https://doi.org/10.1016/S0140-6736(98)10532-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Khayat R, Small R, Rathman L et al (2013) Sleep-disordered breathing in heart failure: identifying and treating an important but often unrecognized comorbidity in heart failure patients. J Card Fail 19:431–444.  https://doi.org/10.1016/j.cardfail.2013.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lavie L, Lavie P (2009) Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link. Eur Respir J 33:1467–1484.  https://doi.org/10.1183/09031936.00086608 CrossRefPubMedGoogle Scholar
  28. 28.
    Lavie P, Silverberg D, Oksenberg A, Hoffstein V (2001) Obstructive sleep apnea and hypertension: from correlative to causative relationship. J Clin Hypertens 3:296–301CrossRefGoogle Scholar
  29. 29.
    Lawin D, Hansky B, Baumann P, Stellbrink C (2018) Heart on a string: a novel approach to managing difficult access to the left pericardiacophrenic vein for phrenic nerve stimulation. Herzschr Elektrophys.  https://doi.org/10.1007/s00399-018-0587-6 CrossRefGoogle Scholar
  30. 30.
    Lui MM-S, Lam DC-L, Ip MS-M (2013) Significance of endothelial dysfunction in sleep-related breathing disorder. Respirol Carlton Vic 18:39–46.  https://doi.org/10.1111/j.1440-1843.2012.02212.x CrossRefGoogle Scholar
  31. 31.
    Mansfield DR, Solin P, Roebuck T et al (2003) The effect of successful heart transplant treatment of heart failure on central sleep apnea. Chest 124:1675–1681CrossRefGoogle Scholar
  32. 32.
    Martínez-García M‑A, Campos-Rodríguez F, Catalán-Serra P et al (2012) Cardiovascular mortality in obstructive sleep apnea in the elderly: role of long-term continuous positive airway pressure treatment: a prospective observational study. Am J Respir Crit Care Med 186:909–916.  https://doi.org/10.1164/rccm.201203-0448OC CrossRefPubMedGoogle Scholar
  33. 33.
    Mayer G, Arzt M, Braumann B et al (2017) German S3 Guideline Nonrestorative Sleep/Sleep Disorders, chapter „Sleep-Related Breathing Disorders in Adults,“ short version: German Sleep Society (Deutsche Gesellschaft für Schlafforschung und Schlafmedizin, DGSM). Somnologie 21:290–301.  https://doi.org/10.1007/s11818-017-0136-2 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Monahan K, Storfer-Isser A, Mehra R et al (2009) Triggering of nocturnal arrhythmias by sleep-disordered breathing events. J Am Coll Cardiol 54:1797–1804.  https://doi.org/10.1016/j.jacc.2009.06.038 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Montserrat JM, Ferrer M, Hernandez L et al (2001) Effectiveness of CPAP treatment in daytime function in sleep apnea syndrome: a randomized controlled study with an optimized placebo. Am J Respir Crit Care Med 164:608–613.  https://doi.org/10.1164/ajrccm.164.4.2006034 CrossRefPubMedGoogle Scholar
  36. 36.
    Naughton MT (2012) Cheyne-Stokes respiration: friend or foe? Thorax 67:357–360.  https://doi.org/10.1136/thoraxjnl-2011-200927 CrossRefPubMedGoogle Scholar
  37. 37.
    Oldenburg O, Wellmann B, Buchholz A et al (2016) Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J 37:1695–1703.  https://doi.org/10.1093/eurheartj/ehv624 CrossRefPubMedGoogle Scholar
  38. 38.
    Philippe C, Stoïca-Herman M, Drouot X et al (2006) Compliance with and effectiveness of adaptive servoventilation versus continuous positive airway pressure in the treatment of Cheyne-Stokes respiration in heart failure over a six month period. Heart 92:337–342.  https://doi.org/10.1136/hrt.2005.060038 CrossRefPubMedGoogle Scholar
  39. 39.
    Ponikowski P, Javaheri S, Michalkiewicz D et al (2012) Transvenous phrenic nerve stimulation for the treatment of central sleep apnoea in heart failure. Eur Heart J 33:889–894.  https://doi.org/10.1093/eurheartj/ehr298 CrossRefPubMedGoogle Scholar
  40. 40.
    Porter JM, Markos F, Snow HM, Shorten GD (2000) Effects of respiratory and metabolic pH changes and hypoxia on ropivacaine-induced cardiotoxicity in dogs. Br J Anaesth 84:92–94CrossRefGoogle Scholar
  41. 41.
    Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660–2667.  https://doi.org/10.1161/CIRCULATIONAHA.105.556746 CrossRefPubMedGoogle Scholar
  42. 42.
    Seals DR, Suwarno NO, Dempsey JA (1990) Influence of lung volume on sympathetic nerve discharge in normal humans. Circ Res 67:130–141CrossRefGoogle Scholar
  43. 43.
    Sin DD, Logan AG, Fitzgerald FS et al (2000) Effects of continuous positive airway pressure on cardiovascular outcomes in heart failure patients with and without Cheyne-Stokes respiration. Circulation 102:61–66CrossRefGoogle Scholar
  44. 44.
    Sinha A‑M, Skobel EC, Breithardt O‑A et al (2004) Cardiac resynchronization therapy improves central sleep apnea and Cheyne-Stokes respiration in patients with chronic heart failure. J Am Coll Cardiol 44:68–71.  https://doi.org/10.1016/j.jacc.2004.03.040 CrossRefPubMedGoogle Scholar
  45. 45.
    Spaak J, Egri ZJ, Kubo T et al (2005) Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension 1979(46):1327–1332.  https://doi.org/10.1161/01.HYP.0000193497.45200.66 CrossRefGoogle Scholar
  46. 46.
    Tamura A, Kawano Y, Naono S et al (2007) Relationship between beta-blocker treatment and the severity of central sleep apnea in chronic heart failure. Chest 131:130–135.  https://doi.org/10.1378/chest.06-0919 CrossRefPubMedGoogle Scholar
  47. 47.
    Teschler H, Döhring J, Wang YM, Berthon-Jones M (2001) Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med 164:614–619.  https://doi.org/10.1164/ajrccm.164.4.9908114 CrossRefPubMedGoogle Scholar
  48. 48.
    Xie A, Skatrud JB, Khayat R et al (2005) Cerebrovascular response to carbon dioxide in patients with congestive heart failure. Am J Respir Crit Care Med 172:371–378.  https://doi.org/10.1164/rccm.200406-807OC CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Christoph Stellbrink
    • 1
  • Bert Hansky
    • 1
  • Philipp Baumann
    • 1
  • Dennis Lawin
    • 1
  1. 1.Klinik für Kardiologie und Internistische Intensivmedizin, Städtische Kliniken BielefeldLehrkrankenhaus der Westfälischen Wilhelms-Universität MünsterBielefeldDeutschland

Personalised recommendations