Herzschrittmachertherapie + Elektrophysiologie

, Volume 23, Issue 3, pp 211–219 | Cite as

Inherited long QT syndrome

Clinical manifestation, genetic diagnostics, and therapy
  • Sven Zumhagen
  • Birgit Stallmeyer
  • Corinna Friedrich
  • Lars Eckardt
  • Guiscard Seebohm
  • Eric Schulze-Bahr


Inherited long QT syndrome (LQTS) is characterized by a prolonged ventricular repolarization (QTc interval) and symptoms (syncope, sudden cardiac arrest) due to polymorphic ventricular arrhythmias. As of today, 13 different cardiac ion channel genes have been associated with congenital LQTS. The most common ones are due to KCNQ1 (LQT-1), KCNH2 (LQT-2), and SCN5A (LQT-3) gene mutations and account for up to 75 % of cases. Typical clinical findings are an increased QT interval on the surface electrocardiogram, specifically altered T wave morphologies, polymorphic ventricular arrhythmias, or an indicative family history. Recently, in the HRS/EHRA expert consensus statement, comprehensive genetic testing of major LQTS genes was recommended for index patients for whom there is a strong clinical suspicion of LQTS. Overall, antiadrenergic therapy, in particular β-receptor blockers, has been the mainstay of therapy and has significantly reduced cardiac events. For high-risk patients, an implantable cardioverter defibrillator (ICD) is recommended. Importantly, lifestyle modification and avoidance of arrhythmia triggers are additional important approaches.


Long QT syndrome Genetic Mutation Phenotype Risk stratification 

Angeborenes Langes QT-Syndrom

Klinische Manifestation, genetische Diagnostik und Therapie


Das angeborene lange QT-Syndrom (LQTS) ist charakterisiert durch eine verlängerte Repolarisation und ein erhöhtes Risiko für das Auftreten eines plötzlichen Herztods. Bislang sind 13 Krankheitsgene bekannt, die für das angeborene LQTS verantwortlich sind; die Ionenkanalgene KCNQ1 (LQT-1), KCNH2 (LQT-2) und SCN5A (LQT-3) sind die häufigsten und für ca. 75 % der Fälle verantwortlich. Typische klinische Zeichen sind neben dem verlängerten QT-Intervall spezifische T-Wellen-Morphologien, polymorphe, ventrikuläre Rhythmusstörungen oder eine hinweisende Familienanamnese. Kürzlich wurde eine internationale Expertenmeinung (HRS/EHRA) verfasst, die bei allen Patienten, bei denen ein hochgradiger, klinischer Verdacht auf ein LQTS besteht, eine genetische Testung empfiehlt. In therapeutischer Hinsicht ist die β-Rezeptor-Blocker-Therapie Mittel der ersten Wahl, da diese signifikant das Auftreten von kardialen Ereignissen verringert. Bei LQTS-Patienten mit einem hohen, kardialen Risiko, besteht die Indikation für einen implantierbaren Kardioverter-Defibrillator (ICD). Unabhängig hiervon haben die Anpassung des Lebensstils und das Vermeiden von Arrhythmietriggern einen wichtigen Stellenwert in der Behandlung der Patienten.


Langes QT-Syndrom Genetik Mutation Phänotyp Risikostratifizierung 


Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.


  1. 1.
    Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13:1077–1109PubMedCrossRefGoogle Scholar
  2. 2.
    Amin AS, Giudicessi JR, Tijsen AJ et al. (2012) Variants in the 3′ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J 33:714–723PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson CL, Delisle BP, Anson BD et al (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 113:365–373PubMedCrossRefGoogle Scholar
  4. 4.
    Bartos DC, Duchatelet S, Burgess DE et al (2011) R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm 8:48–55PubMedCrossRefGoogle Scholar
  5. 5.
    Bellocq C, Van Ginneken AC, Bezzina CR et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–2397PubMedCrossRefGoogle Scholar
  6. 6.
    Bhuiyan ZA, Momenah TS, Gong Q et al (2008) Recurrent intrauterine fetal loss due to near absence of HERG: clinical and functional characterization of a homozygous nonsense HERG Q1070X mutation. Heart Rhythm 5:553–561PubMedCrossRefGoogle Scholar
  7. 7.
    Chen S, Zhang L, Bryant RM et al (2003) KCNQ1 mutations in patients with a family history of lethal cardiac arrhythmias and sudden death. Clin Genet 63:273–282PubMedCrossRefGoogle Scholar
  8. 8.
    Crotti L, Celano G, Dagradi F et al (2008) Congenital long QT syndrome. Orphanet J Rare Dis 3:18PubMedCrossRefGoogle Scholar
  9. 9.
    Etheridge SP, Bowles NE, Arrington CB et al (2011) Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am J Med Genet A 155A:2578–2583PubMedGoogle Scholar
  10. 10.
    Gemma LW, Ward GM, Dettmer MM et al (2011) beta-blockers protect against dispersion of repolarization during exercise in congenital long-QT syndrome type 1. J Cardiovasc Electrophysiol 22:1141–1146PubMedCrossRefGoogle Scholar
  11. 11.
    Gillis J, Burashnikov E, Antzelevitch C et al (2011) Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: Expanding the spectrum of Timothy syndrome. Am J Med Genet A [Epub ahead of print]Google Scholar
  12. 12.
    Goldenberg I, Moss AJ, Zareba W (2006) QT interval: how to measure it and what is “normal”. J Cardiovasc Electrophysiol 17:333–336PubMedCrossRefGoogle Scholar
  13. 13.
    Goldenberg I, Bradley J, Moss A et al (2010) Beta-blocker efficacy in high-risk patients with the congenital long-QT syndrome types 1 and 2: implications for patient management. J Cardiovasc Electrophysiol 21:893–901PubMedGoogle Scholar
  14. 14.
    Goldenberg I, Horr S, Moss AJ et al (2011) Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol 57:51–59PubMedCrossRefGoogle Scholar
  15. 15.
    Goldenberg I, Thottathil P, Lopes CM et al (2012) Trigger-specific ion-channel mechanisms, risk factors, and response to therapy in type 1 long QT syndrome. Heart Rhythm 9:49–56PubMedCrossRefGoogle Scholar
  16. 16.
    Hobbs JB, Peterson DR, Moss AJ et al (2006) Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 296:1249–1254PubMedCrossRefGoogle Scholar
  17. 17.
    Hofman N, Wilde AA, Kaab S et al (2007) Diagnostic criteria for congenital long QT syndrome in the era of molecular genetics: do we need a scoring system? Eur Heart J 28:575–580PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson WH, Jr, Yang P, Yang T et al (2003) Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr Res 53:744–748PubMedCrossRefGoogle Scholar
  19. 19.
    Kaufman ES, Mcnitt S, Moss AJ et al (2008) Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm 5:831–836PubMedCrossRefGoogle Scholar
  20. 20.
    Khan IA, Gowda RM (2004) Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Int J Cardiol 95:1–6PubMedCrossRefGoogle Scholar
  21. 21.
    Kim JA, Lopes CM, Moss AJ et al (2010) Trigger-specific risk factors and response to therapy in long QT syndrome type 2. Heart Rhythm 7:1797–1805PubMedCrossRefGoogle Scholar
  22. 22.
    Kurokawa J, Tamagawa M, Harada N et al (2008) Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J Physiol 586:2961–2973PubMedCrossRefGoogle Scholar
  23. 23.
    Migdalovich D, Moss AJ, Lopes CM et al (2011) Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm 8:1537–1543PubMedCrossRefGoogle Scholar
  24. 24.
    Mihic A, Chauhan VS, Gao X et al (2011) Trafficking defect and proteasomal degradation contribute to the phenotype of a novel KCNH2 long QT syndrome mutation. PLoS One 6:e18273PubMedCrossRefGoogle Scholar
  25. 25.
    Mohler PJ, Schott JJ, Gramolini AO et al (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639PubMedCrossRefGoogle Scholar
  26. 26.
    Moss AJ, Zareba W, Benhorin J et al (1995) ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92:2929–2934PubMedCrossRefGoogle Scholar
  27. 27.
    Moss AJ, Zareba W, Hall WJ et al (2000) Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 101:616–623PubMedCrossRefGoogle Scholar
  28. 28.
    Moss AJ, Zareba W, Schwarz KQ et al (2008) Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol 19:1289–1293PubMedCrossRefGoogle Scholar
  29. 29.
    Obeyesekere MN, Klein GJ, Modi S et al (2011) How to perform and interpret provocative testing for the diagnosis of Brugada syndrome, long-QT syndrome, and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 4:958–964PubMedCrossRefGoogle Scholar
  30. 30.
    Paulussen AD, Gilissen RA, Armstrong M et al (2004) Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med (Berl) 82:182–188CrossRefGoogle Scholar
  31. 31.
    Plaster NM, Tawil R, Tristani-Firouzi M et al (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511–519PubMedCrossRefGoogle Scholar
  32. 32.
    Priori SG, Napolitano C, Schwartz PJ et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344PubMedCrossRefGoogle Scholar
  33. 33.
    Priori SG, Pandit SV, Rivolta I et al (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96:800–807PubMedCrossRefGoogle Scholar
  34. 34.
    Rautaharju PM, Zhou SH, Wong S et al (1992) Sex differences in the evolution of the electrocardiographic QT interval with age. Can J Cardiol 8:690–695PubMedGoogle Scholar
  35. 35.
    Rautaharju PM, Surawicz B, Gettes LS et al (2009) AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part IV: the ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol 53:982–991PubMedCrossRefGoogle Scholar
  36. 36.
    Ruan Y, Denegri M, Liu N et al (2010) Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res 106:1374–1383PubMedCrossRefGoogle Scholar
  37. 37.
    Schwartz PJ (1985) Idiopathic long QT syndrome: progress and questions. Am Heart J 109:399–411PubMedCrossRefGoogle Scholar
  38. 38.
    Schwartz PJ (2005) Management of long QT syndrome. Nat Clin Pract Cardiovasc Med 2:346–351PubMedCrossRefGoogle Scholar
  39. 39.
    Schwartz PJ (2006) The congenital long QT syndromes from genotype to phenotype: clinical implications. J Intern Med 259:39–47PubMedCrossRefGoogle Scholar
  40. 40.
    Schwartz PJ, Stramba-Badiale M (2010) Repolarization abnormalities in the newborn. J Cardiovasc Pharmacol 55:539–543PubMedCrossRefGoogle Scholar
  41. 41.
    Schwartz PJ, Spazzolini C, Crotti L et al (2006) The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113:783–790PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz PJ, Stramba-Badiale M, Crotti L et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767PubMedCrossRefGoogle Scholar
  43. 43.
    Schwartz PJ, Spazzolini C, Priori SG et al (2010) Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation 122:1272–1282PubMedCrossRefGoogle Scholar
  44. 44.
    Shimizu W, Noda T, Takaki H et al (2003) Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. J Am Coll Cardiol 41:633–642PubMedCrossRefGoogle Scholar
  45. 45.
    Stramba-Badiale M, Spagnolo D, Bosi G et al (1995) Are gender differences in QTc present at birth? MISNES Investigators. Multicenter Italian Study on Neonatal Electrocardiography and Sudden Infant Death Syndrome. Am J Cardiol 75:1277–1278PubMedCrossRefGoogle Scholar
  46. 46.
    Tester DJ, Will ML, Haglund CM et al (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–517PubMedCrossRefGoogle Scholar
  47. 47.
    Tristani-Firouzi M, Jensen JL, Donaldson MR et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110:381–388PubMedGoogle Scholar
  48. 48.
    Wang Q, Shen J, Splawski I et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811PubMedCrossRefGoogle Scholar
  49. 49.
    Yang Y, Liang B, Liu J et al (2010) Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet 86:872–880PubMedCrossRefGoogle Scholar
  50. 50.
    Zareba W (2006) Genotype-specific ECG patterns in long QT syndrome. J Electrocardiol 39:S101–S106PubMedCrossRefGoogle Scholar
  51. 51.
    Zareba W, Moss AJ, Locati EH et al (2003) Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 42:103–109PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang S, Yin K, Ren X et al (2008) Identification of a novel KCNQ1 mutation associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long QT syndrome in a Chinese family. BMC Med Genet 9:24PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Chen S, Zhang L et al (2008) Protective effect of KCNH2 single nucleotide polymorphism K897T in LQTS families and identification of novel KCNQ1 and KCNH2 mutations. BMC Med Genet 9:87PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sven Zumhagen
    • 1
  • Birgit Stallmeyer
    • 1
  • Corinna Friedrich
    • 1
  • Lars Eckardt
    • 2
  • Guiscard Seebohm
    • 1
  • Eric Schulze-Bahr
    • 1
  1. 1.Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany
  2. 2.Division of Experimental and Clinical Electrophysiology, Department of Cardiovascular MedicineUniversity Hospital MünsterMünsterGermany

Personalised recommendations