Advertisement

Verbesserung der linksventrikulären Kontraktilität durch Stimulation in der absoluten Refraktärperiode

Kardiale Kontraktilitätsmodulation
  • C. ButterEmail author
Schwerpunkt

Zusammenfassung

Die „cardiac contractility modulation“ (CCM) stellt neben der kardialen Resynchronisationstherapie (CRT) eine weitere elektrische Stimulationsform und Therapieoption dar, die bei medikamentös optimal behandelten Herzinsuffizienzpatienten eine Verbesserung ihrer Belastbarkeit und Lebensqualität bewirken kann. Die CCM erfolgt durch die Abgabe einer im Vergleich zu einem konventionellen Schrittmacherstimulus etwa 100-mal höheren Energie in der absoluten Refraktärphase des Aktionspotenzials. Diese „nicht-excitatorischen“ Impulse lösen somit kein zusätzliches Aktionspotential aus, rekrutieren keine zusätzlichen kontraktilen Elemente und initiieren somit keine zusätzliche Kontraktion.

Die intermittierende Stimulationsabgabe erfolgt über 2 rechtsseptal transvenös platzierte Schraubelektroden, die mit der zusätzlichen Vorhofelektrode mit dem wiederaufladbaren Aggregat verbunden sind. Das Kontraktilitätsmodulationssystem verfügt weder über eine herkömmliche antibradykarde noch über eine antitachykarde Funktion.

Schlüsselwörter

Kardiale Kontraktilitätsmodulation Elektrische Herzinsuffizienztherapie Genexpression Nichtexzitatorische Stimulation Herzinsuffizienz 

Improving left ventricular contraction by stimulation during the absolute refractory period

Cardiac contractility modulation

Abstract

Cardiac contractility modulating (CCM) signals are nonexcitatory signals applied during the absolute refractory period and have been shown to enhance the strength of left ventricular contraction in studies performed in animals and humans with heart failure. In patients with congestive heart failure, improvement of exercise tolerance and quality of life have been shown. Recent studies from myocardial biopsies demonstrate that CCM treatment normalizes expression of many genes that are abnormally expressed in heart failure, including proteins involved with calcium cycling. These findings suggest that CCM might be an alternative or even additional electrical treatment option for patients with heart failure and normal QRS duration delivered by a pacemaker, e.g., a rechargeable device without any antibradycardiac or antitachycardiac function.

Keywords

Cardiac contractility modulating Heart failure Electrical heart failure therapy Gene expression Congestive heart failure 

Notes

Interessenskonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Referententätigkeit und Studienteilnehmer für Biotronik, Medtronic, St Jude Medical, Impulse Dynamics und Boston Scientific.

Referenzen

  1. 1.
    Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346(24):1845–1853PubMedCrossRefGoogle Scholar
  2. 2.
    Auricchio A, Stellbrink C, Butter C et al (2003) Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 42(12):2109–2116PubMedCrossRefGoogle Scholar
  3. 3.
    Borggrefe MM, Lawo T, Butter C et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29(8):1019–1028PubMedCrossRefGoogle Scholar
  4. 4.
    Breithardt OA, Stellbrink C, Kramer AP et al (2002) Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol 40(3):536–545PubMedCrossRefGoogle Scholar
  5. 5.
    Brunckhorst CB, Shemer I, Mika Y et al (2006) Cardiac contractility modulation by non-excitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail 8(1):7–15PubMedCrossRefGoogle Scholar
  6. 6.
    Burkhoff D, Ben-Haim SA (2002) Nonexcitatory electrical signals for enhancing ventricular contractility: rationale and initial investigations of an experimental treatment for heart failure. Am J Physiol Heart Circ Physiol 2005 Jun;288(6):H2550–H2556Google Scholar
  7. 7.
    Burkhoff D, Shemer I, Felzen B et al (2001) Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 6(1):27–34PubMedCrossRefGoogle Scholar
  8. 8.
    Butter C, Rastogi S, Minden HH et al (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol 51(18):1784–1789PubMedCrossRefGoogle Scholar
  9. 9.
    Butter C, Wellnhofer E, Schlegl M et al (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142PubMedCrossRefGoogle Scholar
  10. 10.
    Butter C, Meyhofer J, Seifert M et al (2007) First use of cardiac contractility modulation (CCM) in a patient failing CRT therapy: clinical and technical aspects of combined therapies. Eur J Heart Fail 9(9):955–958PubMedCrossRefGoogle Scholar
  11. 11.
    Gomez AM, Valdivia HH, Cheng H et al (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806PubMedCrossRefGoogle Scholar
  12. 12.
    Heerdt PM, Holmes JW, Cai B et al (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102(22):2713–2719PubMedGoogle Scholar
  13. 13.
    Imai M, Rastogi S, Gupta RC et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49(21):2120–2128PubMedCrossRefGoogle Scholar
  14. 14.
    Kadish A, Nademanee K, Volosin K et al (2010) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J (in press)Google Scholar
  15. 15.
    Lawo T, Borggrefe M, Butter C et al (2005) Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol 46(12):2229–2236PubMedCrossRefGoogle Scholar
  16. 16.
    Marrouche NF, Pavia SV, Zhuang S et al (2002) Nonexcitatory stimulus delivery improves left ventricular function in hearts with left bundle branch block. J Cardiovasc Electrophysiol 13(7):691–695PubMedCrossRefGoogle Scholar
  17. 17.
    Mishra S, Gupta RC, Tiwari N et al (2002) Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J Heart Lung Transplant 21(3):366–373PubMedCrossRefGoogle Scholar
  18. 18.
    Mohri S, He KL, Dickstein M et al (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282(5):H1642–H1647PubMedGoogle Scholar
  19. 19.
    Mohri S, Shimizu J, Mika Y et al (2003) Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am J Physiol Heart Circ Physiol 284(4):H1119–H1123PubMedGoogle Scholar
  20. 20.
    Morita H, Suzuki G, Haddad W et al (2003) Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure. J Card Fail 9(1):69–75PubMedCrossRefGoogle Scholar
  21. 21.
    Morita H, Suzuki G, Haddad W et al (2004) Long-term effects of non-excitatory cardiac contractility modulation electric signals on the progression of heart failure in dogs. Eur J Heart Fail 6(2):145–150PubMedCrossRefGoogle Scholar
  22. 22.
    Moss AJ, Zareba W, Hall WJ et al (2002) Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 346(12):877–883PubMedCrossRefGoogle Scholar
  23. 23.
    Nägele H, Behrens S, Eisermann C (2008) Cardiac contractility modulation in non-responders tocardiac resynchronization therapy.Europace 10(12):1375–1380PubMedCrossRefGoogle Scholar
  24. 24.
    Neelagaru SB, Sanchez JE, Lau SK et al (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3(10):1140–1147PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson GS, Berger RD, Fetics BJ et al (2000) Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation 102(25):3053–3059PubMedGoogle Scholar
  26. 26.
    Pappone C, Augello G, Rosanio S et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427PubMedCrossRefGoogle Scholar
  27. 27.
    Reuter H (1974) Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ Res 34(5):599–605PubMedGoogle Scholar
  28. 28.
    Schmidt U, Hajjar RJ, Kim CS et al (1999) Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277(2 Pt 2):H474–H480PubMedGoogle Scholar
  29. 29.
    Shenkman HJ, Pampati V, Khandelwal AK et al (2002) Congestive heart failure and QRS duration: establishing prognosis study. Chest 122(2):528–534PubMedCrossRefGoogle Scholar
  30. 30.
    Stix G, Borggrefe M, Wolpert C et al (2004) Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 25(8):650–655PubMedCrossRefGoogle Scholar
  31. 31.
    Studer R, Reinecke H, Bilger J et al (1994) Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 75(3):443–453PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.KardiologieHerzzentrum Brandenburg in Bernau BernauDeutschland

Personalised recommendations