Herzschrittmachertherapie + Elektrophysiologie

, Volume 21, Issue 4, pp 217–221 | Cite as

Atrial-selective drugs for treatment of atrial fibrillation

Schwerpunkt
  • 225 Downloads

Abstract

Atrial fibrillation (AF) is accompanied by a high risk of thromboembolic complications necessitating anticoagulation therapy. Arrhythmias have a high tendency to become persistent. Catheter ablation techniques are highly effective in the treatment of AF; however, these procedures are far too costly and time-consuming for the routine treatment of large numbers of AF patients. Moreover, many patients prefer drug treatment although conventional antiarrhythmic drugs are moderately effective and are burdened with severe cardiac and noncardiac side effects. New antifibrillatory drugs developed for the treatment of AF include multichannel blockers with a high degree of atrial selectivity. The rationale of this approach is to induce antiarrhythmic actions only in the atria without conferring proarrhythmic effects in the ventricles.

Atrial selective drug action is expected with ion channel blockers targeting ion channels that are expressed predominantly in the atria, i.e., Kv1.5 (IKur), or Kir 3.1 and Kir 3.4 (IK,ACh). Na+ channel blockers that dissociate rapidly may exert atrial selectivity because of subtle differences in atrial and ventricular action potentials. Finally, atrial-selective targets may evolve due to disease-specific processes (e.g., rate-dependent Na+ channel blockers, selective drugs against constitutively active IK,ACh channels).

Keywords

Atrial fibrillation Remodeling Ion channels Antiarrhythmic drugs Drug binding 

Vorhofselektive Antiarrhythmika für die Therapie von Vorhofflimmern

Zusammenfassung

Vorhofflimmern geht mit einem hohen Risiko für thromboembolische Komplikationen einher, so dass eine Antikoagulationstherapie erforderlich ist. Charakteristisch für diese Arrhythmie ist die große Neigung zur Chronifizierung. Eine hoch effektive Therapieform ist die Katheterablation, allerdings sind die heute üblichen Verfahren viel zu teuer und zeitaufwendig, um damit die große Zahl der Vorhofflimmerpatienten routinemäßig zu versorgen. Trotz der geringeren Wirksamkeit und der hohen Inzidenz von kardialen und extrakardialen Nebenwirkungen konventioneller Antiarrhythmika wünschen viele Patienten zunächst einen medikamentösen Therapieversuch. Neue antifibrillatorische Substanzen mit der Indikation Vorhofflimmern umfassen Multikanalblocker mit einem hohen Ausmaß an Vorhofselektivität. Dieser Therapieansatz beruht auf der Vorstellung, dass beim Vorhofflimmern lediglich die Vorhöfe auf ein Antiarrhythmikum ansprechen sollen. Die Ventrikel benötigen keinen antiarhythmischen Effekt und sollen möglichst überhaupt nicht beeinflusst werden, um das Risiko pro-arrhythmischer Effekte zu vermeiden.

Eine vorhofselektive Wirkung kann von Ionenkanalblockern, die gegen nur im Vorhof exprimierte Kanäle gerichtet sind, erwartet werden, wie z. B. Kv1.5 (IKur), oder Kir 3.1 und Kir 3.4 (IK,ACh). Rasch dissoziierende Na+-Kanalblocker können wegen der elektrophysiologischen Unterschiede zwischen Ventrikel- und Vorhofgewebe ebenfalls eine vorhofselektive Wirkung haben. Und schließlich kann eine vorhofselektive Wirkung aufgrund krankheitsspezifischer Prozesse erzielt werden, z. B. mit frequenzabhängigen Na+-Kanalblockern oder – zumindest theoretisch denkbar – mit selektiven Blockern des konstitutiv aktiven IK,ACh.

Schlüsselwörter

Vorhofflimmern Remodelling Ionenkanäle Antiarrhythmika Pharmakonbindung 

References

  1. 1.
    Haissaguerre M, Jais P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666CrossRefPubMedGoogle Scholar
  2. 2.
    Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968PubMedGoogle Scholar
  3. 3.
    Dobrev D, Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148PubMedGoogle Scholar
  4. 4.
    Savelieva I, Kourliouros A, Camm J (2010) Primary and secondary prevention of atrial fibrillation with statins and polyunsaturated fatty acids: review of evidence and clinical relevance. Naunyn Schmiedebergs Arch Pharmacol 381:207–219CrossRefGoogle Scholar
  5. 5.
    Van Wagoner DR, Pond AL, Lamorgese M et al (1999) Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428–436Google Scholar
  6. 6.
    Dobrev D, Nattel S (2010) New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet 375:1212–1223CrossRefPubMedGoogle Scholar
  7. 7.
    Sun H, Leblanc N, Nattel S (1997) Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am J Physiol 272:H1625–H1635PubMedGoogle Scholar
  8. 8.
    Brundel BJ, Gelder IC van, Henning RH et al (2001) Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol 37:926–932CrossRefPubMedGoogle Scholar
  9. 9.
    Carnes CA, Janssen PM, Ruehr ML et al (2007) Atrial glutathione content, calcium current, and contractility. J Biol Chem 282:28063–28073CrossRefPubMedGoogle Scholar
  10. 10.
    Christ T, Rauwolf T, Braun M et al (2004) Recording atrial monophasic action potentials using standard pacemaker leads: an alternative way to study electrophysiology properties of the human atrium in vivo? Pacing Clin Electrophysiol 27:1632–1637CrossRefPubMedGoogle Scholar
  11. 11.
    Wyse DG, Waldo AL, DiMarco JP et al (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833CrossRefPubMedGoogle Scholar
  12. 12.
    Vaughan Williams EM (1975) Classification of antidysrhythmic drugs. Pharmacol Ther B 1:115–138Google Scholar
  13. 13.
    Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20CrossRefPubMedGoogle Scholar
  14. 14.
    Allessie MA, Bonke FI, Schopman FJ (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41:9–18PubMedGoogle Scholar
  15. 15.
    Echt DS, Liebson PR, Mitchell LB et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324:781–788CrossRefPubMedGoogle Scholar
  16. 16.
    Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol 275:H301–H321PubMedGoogle Scholar
  17. 17.
    Wettwer E, Hala O, Christ T et al (2004) Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 110:2299–2306CrossRefPubMedGoogle Scholar
  18. 18.
    Van Wagoner DR, Pond AL, McCarthy PM et al (1997) Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 80:772–781Google Scholar
  19. 19.
    Bosch RF, Zeng X, Grammer JB et al (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44:121–131CrossRefPubMedGoogle Scholar
  20. 20.
    Christ T, Wettwer E, Voigt N et al (2008) Pathology-specific effects of the I(Kur)/I(to)/I(K,ACh) blocker AVE0118 on ion channels in human chronic atrial fibrillation. Br J Pharmacol 154:1619–1630CrossRefPubMedGoogle Scholar
  21. 21.
    Ford JW, Milnes JT (2008) New drugs targeting the cardiac ultra-rapid delayed-rectifier current (I Kur): rationale, pharmacology and evidence for potential therapeutic value. J Cardiovasc Pharmacol 52:105–120CrossRefPubMedGoogle Scholar
  22. 22.
    Dobrev D, Graf E, Wettwer E et al (2001) Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557CrossRefPubMedGoogle Scholar
  23. 23.
    Allessie MA, Lammers WJ, Bonke IM, Hollen J (1984) Intra-atrial reentry as a mechanism for atrial flutter induced by acetylcholine and rapid pacing in the dog. Circulation 70:123–135PubMedGoogle Scholar
  24. 24.
    Ehrlich JR, Biliczki P, Hohnloser SH, Nattel S (2008) Atrial-selective approaches for the treatment of atrial fibrillation. J Am Coll Cardiol 51:787–792CrossRefPubMedGoogle Scholar
  25. 25.
    Dobrev D, Friedrich A, Voigt N et al (2005) The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706CrossRefPubMedGoogle Scholar
  26. 26.
    Burashnikov A, Di Diego JM, Zygmunt AC et al (2007) Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Circulation 116:1449–1457CrossRefPubMedGoogle Scholar
  27. 27.
    Siddiqui MA, Keam SJ (2006) Ranolazine: a review of its use in chronic stable angina pectoris. Drugs 66:693–710CrossRefPubMedGoogle Scholar
  28. 28.
    Zaza A, Belardinelli L, Shryock JC (2008) Pathophysiology and pharmacology of the cardiac “late sodium current.” Pharmacol Ther 119:326–339Google Scholar
  29. 29.
    Sossalla S, Kallmeyer B, Wagner S et al (2010) Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342CrossRefPubMedGoogle Scholar
  30. 30.
    Burashnikov A, Antzelevitch C (2009) Atrial-selective sodium channel block for the treatment of atrial fibrillation. Expert Opin Emerg Drugs 14:233–249CrossRefPubMedGoogle Scholar
  31. 31.
    Marrouche NF, Reddy RK, Wittkowsky AK, Bardy GH (2000) High-dose bolus lidocaine for chemical cardioversion of atrial fibrillation: a prospective, randomized, double-blind crossover trial. Am Heart J 139:E8–E11CrossRefPubMedGoogle Scholar
  32. 32.
    Voigt N, Rozmaritsa N, Trausch A et al (2010) Inhibition of I(K,ACh) current may contribute to clinical efficacy of class I and class III antiarrhythmic drugs in patients with atrial fibrillation. Naunyn Schmiedebergs Arch Pharmacol 381:251–259CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Pharmacology and ToxicologyDresden University of TechnologyDresdenDeutschland

Personalised recommendations