Neue Antiarrhythmika in der Therapie des Vorhofflimmerns

I. Ionenkanalblocker
  • U. Ravens
  • E. Wettwer
  • U. Schotten
  • R. Weßel
  • D. Dobrev
BEITRAG ZUM THEMENSCHWERPUNKT

Zusammenfassung

Die vergangenen zehn Jahre haben einen rasanten Zuwachs in unserem Verständnis von den Mechanismen, die dem Vorhofflimmern zugrunde liegen, gebracht. Nach dem Einsetzen von Vorhofflimmern treten bereits innerhalb kurzer Zeit elektrophysiologische und strukturelle Veränderungen (Remodeling) auf, die die Progredienz dieser Rhythmusstörung maßgeblich verstärken. Die Entwicklung neuer Therapieansätze verfolgt drei Ziele, nämlich 1. Verhinderung von Remodeling, insbesondere von strukturellem Remodeling, 2. Verbesserung von zugelassenen Antiarrhythmika hinsichtlich Wirksamkeit und Nebenwirkungsprofil, und 3. Entwicklung von Vorhof- bzw. Pathologie-selektiven Antiarrhythmika, um ventrikuläre proarrhythmische Effekte zu vermeiden. In der vorliegenden Übersicht werden die Pathophysiologie und das elektrische Remodeling bei Vorhofflimmern erörtert. Nachfolgend werden die Eigenschaften neuer, speziell für die Therapie des Vorhofflimmerns entwickelter antiarrhythmischer Substanzen im Einzelnen diskutiert.

Schlüsselwörter

Vorhofflimmern elektrisches Remodeling Aktionspotentiale Ca2+-Homöostase Antiarrhythmika 

New antiarrhythmic drugs for therapy of atrial fibrillation: I. Ion channel blockers

Summary

During the last ten years we have made substantial progress in our understanding of the underlying mechanisms of atrial fibrillation. The high rate associated alterations in electrical and structural properties of the atria, referred to as atrial remodeling, promote the progression of atrial fibrillation. The development of new therapeutic approaches addresses three different directions: (i) prevention of atrial remodeling, especially of structural remodeling; (ii) increase of long-term efficacy of currently used drugs and improvement of their side-effect profile; and (iii) design of atria- and pathology-specific antiarrhythmic drugs without concomitant proarrhythmic effects in the ventricles. The current review outlines the pathophysiology of atrial fibrillation and focuses on electrical remodeling. The properties of new antiarrhythmic drugs for atrial fibrillation are discussed in detail.

Key words

Atrial fibrillation electrical remodeling action potential Ca2+ homeostasis antiarrhythmic drugs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ai X, Pogwizd SM (2004) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Dashti R, Sami M (2001) Dofetilide: a new class III antiarrhythmic agent. Can J Cardiol 17(1):63–67PubMedGoogle Scholar
  3. 3.
    Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246PubMedCrossRefGoogle Scholar
  4. 4.
    Amos GJ, Wettwer E, Metzger F, Li Q, Himmel HM, Ravens U (1996) Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol 491:31–50PubMedGoogle Scholar
  5. 5.
    Arndt M, Lendeckel U, Rocken C, Nepple K, Wolke C, Spiess A, Huth C, Ansorge S, Klein HU, Goette A (2002) Altered expression of ADAMs (A Disintegrin And Metalloproteinase) in fibrillating human atria. Circulation 105):720–725PubMedCrossRefGoogle Scholar
  6. 6.
    Beatch GN, Shinagawa K, Johnson B, Jung G, Plouvier B, Zolotoy A, Ezrin AM, Walker MJA, Nattel S (2002) RSD1235 selectively prolongs atrial refractoriness and terminates AF in dogs with electrically remodeled atria (abstr). Pacing Clin Electrophysiol 25:698Google Scholar
  7. 7.
    Blaauw Y, Gögelein H, Tieleman RG, van Hunnik A, Schotten U, Allessie MA (2004) “Early” class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation 110:1717–1724PubMedCrossRefGoogle Scholar
  8. 8.
    Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409:35–36PubMedCrossRefGoogle Scholar
  9. 9.
    Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 144:121–131CrossRefGoogle Scholar
  10. 10.
    Carlsson L, Chartier D, Nattel S (2006) Characterization of the in vivo and in vitro electrophysiological effects of the novel antiarrhythmic agent AZD7009 in atrial and ventricular tissue of the dog. J Cardiovasc Pharmacol 47:123–132PubMedCrossRefGoogle Scholar
  11. 11.
    Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S (2006) Kir3-Based Inward Rectifier Potassium Current. Potential Role in Atrial Tachycardia Remodeling Effects on Atrial Repolarization and Arrhythmias. Circulation [Epub ahead of print]Google Scholar
  12. 12.
    Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases Circulation 110:2651–2657PubMedCrossRefGoogle Scholar
  13. 13.
    Cox JL (2004) Cardiac surgery for arrhythmias. Pacing Clin Electrophysiol 27:266–282PubMedCrossRefGoogle Scholar
  14. 14.
    Crijns HJGM, Van Gelder IC, Waldfridsson H et al (2005) Safety and efficacy of AZD7009 given intravenously to patients for conversion of atrial fibrillation/atrial flutter. Eur Heart J 26:506Google Scholar
  15. 15.
    Cropp JS, Antal EG, Talbert RL (1997) Ibutilide: a new class III antiarrhythmic agent. Pharmacotherapy 17:1–9PubMedGoogle Scholar
  16. 16.
    Dobrev D, Graf E, Wettwer E, Himmel HM, Hala O, Doerfel C, Christ T, Schuler S, Ravens U (2001) Molecular basis of downregulation of G-proteincoupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced IK,ACh and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557PubMedGoogle Scholar
  17. 17.
    Dobrev D, Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148PubMedGoogle Scholar
  18. 18.
    Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens (2005) The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706PubMedCrossRefGoogle Scholar
  19. 19.
    Dukes ID, Morad M (1989) Tedisamil reactivates transient outward K+ current in rat ventricular myocytes. Am J Physiol 257:H1746–H1749PubMedGoogle Scholar
  20. 20.
    Dukes ID, Cleeman L, Morad M (1990) Tedisamil blocks the transient and the delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp Ther 254:560–569PubMedGoogle Scholar
  21. 21.
    Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL et al (1991) Mortality and Morbidity in patients receiving encainide, flecainide, or placebo: The Cardiac Arrhythmia Suppression Trial New Engl J Med 324:781–788PubMedCrossRefGoogle Scholar
  22. 22.
    Edvardsson N, Walfridsson, Aass H et al (2005) Predominant effects on atrial versus ventricular refractoriness in man by the novel antiarrhythmic agent AZD7009. Eur Heart J 26:506Google Scholar
  23. 23.
    Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hébert TE, Nattel S (2004) Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary veins myocardial sleeves and left atrium. J Physiol 557:583–559PubMedCrossRefGoogle Scholar
  24. 24.
    Faivre JF, Gout B, Bril A (1995) Tedisamil. Cardiovasc Drug Rev 13:33–55Google Scholar
  25. 25.
    Faivre JF, Rouanet S, Bril A (1998) Comparative effects of glibenclamide, tedisamil, dofetilide, E-4031, and BRL-32872 on protein kinase A-activated chloride current in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 31:551–557PubMedCrossRefGoogle Scholar
  26. 26.
    Fedida D, Eldstrom J, Hesketh JC, Lamorgese M, Castel L, Steele DF, Van Wagoner DR (2003) Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circ Res 93:744–751PubMedCrossRefGoogle Scholar
  27. 27.
    Fedida D, Orth PMR, Chen JYC, Lin S, Plouvier B, Jung G, Ezrin AM, Beatch GN (2005) The mechanism of atrial antiarrhythmic action of RSD1235. J Cardiovasc Electrophysiol 16:1–12CrossRefGoogle Scholar
  28. 28.
    Fedida D, Orth PMR, Hesketh JC, Ezrin AM (2006) The role of late INa and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol 17:S1–S8CrossRefGoogle Scholar
  29. 29.
    Gögelein H, Brendel J, Steinmeyer K, Strubing C, Picard N, Rampe D, Kopp K, Busch AE, Bleich M (2004) Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn Schmiedeberg’s Arch Pharmacol 370:183–192Google Scholar
  30. 30.
    Götte A, Staack T, Rocken C Arndt M, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U (2000 a) Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 35:1669–1677CrossRefGoogle Scholar
  31. 31.
    Götte A, Arndt M, Roecken C, Spiess A, Staack T, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U (2000b) Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101:2678–2681Google Scholar
  32. 32.
    Goette A, Arndt M, Roecken C, Staack T, Bechtloff R, Reinhold, D, Huth C, Ansorge S, Klein HU, Lendeckel U (2002) Calpains and cytokines in fibrillating human atria. Am J Physiol Heart Circ Physiol 283:H264–H272PubMedGoogle Scholar
  33. 33.
    Goldstein RN, Khrestian C, Carlsson L, Waldo AL (2004) AZ7009: A new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J Cardiovasc Electrophysiol 15:1444–1450PubMedCrossRefGoogle Scholar
  34. 34.
    Goldstein RN, Stambler BS (2005) New antiarrhythmic drugs for prevention of atrial fibrillation. Progr Cardiovasc Dis 48:193–208CrossRefGoogle Scholar
  35. 35.
    Gross GJ, Castle NA (1998) Propafenone inhibition of human atrial myocyte repolarizing currents. J Mol Cell Cardiol 30:783–793PubMedCrossRefGoogle Scholar
  36. 36.
    Hammwöhner M, D’Alessandro A, Dobrev D, Kirchhof P, Goette A (2006) Neue Antiarrhythmika in der Therapie des Vorhofflimmerns. II Nicht-Ionenkanalblocker. Herzschr Elektrophys 17:73–80CrossRefGoogle Scholar
  37. 37.
    Hancox JC, Levi AJ, Witchel HJ (1998) Time course and voltage dependence of expressed HERG current compared with native “rapid” delayed rectifier K current during the cardiac ventricular action potential. Pflugers Arch 436:843–853PubMedCrossRefGoogle Scholar
  38. 38.
    Hohnloser SH, Dorian P, Straub M, Beckmann K, Kowey P (2004) Safety and efficacy of intravenously administered tedisamil for rapid conversion of recent onset atrial fibrillation or atrial flutter. J Am Coll Cardiol 44:99–104PubMedCrossRefGoogle Scholar
  39. 39.
    Inomata N, Ishihara T, Akaike N (1991) Mechanisms of the anticholinergic effect of SUN 1165 in comparison with flecainide, disopyramide and quinidine in single atrial myocytes isolated from guinea-pig. Br J Pharmacol 104:1007–1111PubMedGoogle Scholar
  40. 40.
    Jost N, Virag L, Hala O, Varro A, Thormahlen D, Papp JG (2004) Effect of the antifibrillatory compound tedisamil (KC-8857) on transmembrane currents in mammalian ventricular myocytes. Curr Med Chem 11:3219–3228PubMedGoogle Scholar
  41. 41.
    Kang J, Chen XL, Wang H, Ji J, Cheng H, Incardona J, Reynolds W, Viviani F, Tabart M, Rampe D (2005) Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Mol Pharmacol 67:827–836PubMedCrossRefGoogle Scholar
  42. 42.
    Kathofer S, Thomas D, Karle CA (2005) The novel antiarrhythmic drug dronedarone: comparison with amiodarone. Cardiovasc Drug Rev 23:217–230PubMedCrossRefGoogle Scholar
  43. 43.
    Kaumann AJ (1994) Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol Sci 15:451–455PubMedCrossRefGoogle Scholar
  44. 44.
    Kirchhof P, Eckardt L, Loh P, Weber K, Fischer RJ, Seidl KH, Böcker D, Breithardt G, Haverkamp W, Borggrefe M (2002) Anterior-posterior versus anterior-lateral electrode positions for external cardioversion of atrial fibrillation: a randomised trial. Lancet 360:1275–1279PubMedCrossRefGoogle Scholar
  45. 45.
    Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J (2002) Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 54:361–379PubMedCrossRefGoogle Scholar
  46. 46.
    Linhart M, Nickening G, Lewalter T (2006) Elektrische und pharmakologische Frühkardioversion von Vorhofflimmern. Herzschr Elektrophys 17:81–88Google Scholar
  47. 47.
    Matsuda T, Takeda K, Ito M, Yamagishi R, Tamura M, Nakamura H, Tsuruoka N, Saito T, Masumiya H, Suzuki T, Iida-Tanaka N, Itokawa-Matsuda M, Yamashita T, Tsuruzoe N, Tanaka H, Shigenobu K (2005) Atria selective prolongation by NIP-142, an antiarrhythmic agent, of refractory period and action potential duration in guinea pig myocardium. J Pharmacol Sci 98:33–40PubMedCrossRefGoogle Scholar
  48. 48.
    Nakano Y, Niida S, Dote K, Takenaka S, Hirao H, Miura F, Ishida M, Shingu T, Sueda T, Yoshizumi M, Chayama K (2004) Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol 43:818–825PubMedCrossRefGoogle Scholar
  49. 49.
    Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226PubMedCrossRefGoogle Scholar
  50. 50.
    Oral H, Pappone C, Cugh A, Good E, Bogun F, Pelosi F Jr, Bates ER, Lehmann MH, Vicedomini G, Augello G, Agricola E, Sala S, Santinelli V, Morady F (2006) Circumferential pulmonary vein-ablation for chronic atrial fibrillation. N Engl J Med 354:934–941PubMedCrossRefGoogle Scholar
  51. 51.
    Orth PM, Hesketh JC, Mak CK, Yang Y, Lin S, Beatch GN, Ezrin AM, Fedida D (2006) RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res [Epub ahead of print]Google Scholar
  52. 52.
    Page RL, Roden DM (2005) Drug therapy for atrial fibrillation: Where do we go from here? Nature Rev 4:899–910CrossRefGoogle Scholar
  53. 53.
    Persson F, Carlsson L, Duker G, Jacobson I (2005 a) Blocking characteristics of hERG, hNav1.5 and hKvLQT1/hminK after administration of the novel antiarrhythmic compound AZD7009. J Cardiovasc Electrophysiol 16:329–341CrossRefGoogle Scholar
  54. 54.
    Persson F, Carlsson L, Duker G, Jacobson I (2005 b) Blocking characteristics of hKv1.5 and hKv4.3/hKChIP2.2 after administration of the novel antiarrhythmic compound AZD7009. J Cardiovasc Pharmacol 46:7–17CrossRefGoogle Scholar
  55. 55.
    Pino R, Cerbai E, Calamai G, Alajmo F, Borgioli A, Braconi L, Cassai M, Montesi GF, Mugelli A (1998) Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. Cardiovasc Res 40:516–522PubMedCrossRefGoogle Scholar
  56. 56.
    Rahme MM, Cotter B, Leistad E, Wadhwa MK, Mohabir R, Ford AP, Eglen RM, Feld GK (1999) Electrophysiological and antiarrhythmic effects of the atrial selective 5-HT4 receptor antagonist RS-100302 in experimental atrial flutter and fibrillation. Circulation 100:2010–2017PubMedGoogle Scholar
  57. 57.
    Roy D, Talajic M, Dorian P, Connolly S, Eisenberg MJ, Green M, Kus T, Lambert J, Dubuc M, Gagne P, Nattel S, Thibault B (2000) Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med 342:913–920PubMedCrossRefGoogle Scholar
  58. 58.
    Roy D, Rowe BH, Steill IG, Coutu B, Phaneuf D, Lee J, Vidaillet H, Dickinson G, Grant S, Ezrin AM, Beatch GN (2004) A randomized controlled trial of RSD1235, a novel antiarrhythmic agent, in the treatment of recent onset atrial fibrillation. J Am Coll Cardiol 44:2355–2361PubMedCrossRefGoogle Scholar
  59. 59.
    Salata JJ, Brooks RR (1997) Pharmacology of azimilide dihydrochloride (NE-10064), a class III antiarrhythmic agent. Cardiovasc Drug Res 15:137–156Google Scholar
  60. 60.
    Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215PubMedCrossRefGoogle Scholar
  61. 61.
    Schultz Hansen R, Diness TG, Christ T, Demnitz J, Ravens U, Olesen SP, Grunnet M (2006) Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea (NS1643). Mol Pharmacol 69:266–277Google Scholar
  62. 62.
    Singarayar S, Bursill J, Wyse K, Bauskin A, Wu W, Vandenberg J, Breit S, Campbell T (2003) Extracellular acidosis modulates drug block of Kv4.3 currents by flecainide and quinidine. J Cardiovasc Electrophysiol 14:641–650PubMedCrossRefGoogle Scholar
  63. 63.
    Snyders DJ, Hondeghem LM (1990) Effects of quinidine on the sodium current of guinea pig ventricular myocytes. Evidence for a drug-associated rested state with altered kinetics. Circ Res 66:565–579PubMedGoogle Scholar
  64. 64.
    Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T, Said SA, Darmanata JI, Timmermans AJ, Tijssen JG, Crijns HJ; Rate Control versus Electrical Cardioversion for Persistent Atrial Fibrillation Study Group (2002) A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 347:1834–1840PubMedCrossRefGoogle Scholar
  65. 65.
    Vest JA, Reiken SR, Wehrens XHT, Lehnard SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111:2025–2032PubMedCrossRefGoogle Scholar
  66. 66.
    Wettwer E, Himmel HM, Amos GJ, Li Q, Metzger F, Ravens U (1998) Mechanism of block by tedisamil of transient outward current in human ventricular subepicardial myocytes. Br J Pharmacol 125:659–666PubMedCrossRefGoogle Scholar
  67. 67.
    Wettwer E, Hala O, Christ T, Heubach JF, Dobrev D, Knaut M, Varro A, Ravens U (2004) Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 110:2299–2306PubMedCrossRefGoogle Scholar
  68. 68.
    Wijffels MCEF, Kirchhof CJHJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake, chronically instrumented conscious goats. Circulation 92:1954–1968PubMedGoogle Scholar
  69. 69.
    Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC, Dalquist JE, Corley SD; Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833PubMedCrossRefGoogle Scholar
  70. 70.
    Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, Odim J, Laks H, Sen L (2004) Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 109:363–368PubMedCrossRefGoogle Scholar
  71. 71.
    Yusuf A, Al-Saady N, Camm AJ (2003) 5-hydroxytryptamine and atrial fibrillation: How significant is this piece in the puzzle? J Cardiovasc Electrophysiol 14:209–214PubMedCrossRefGoogle Scholar
  72. 72.
    Zareba KM (2006) Dronedarone: a new antiarrhythmic agent. Drugs Today (Barc) 42:75–86CrossRefPubMedGoogle Scholar
  73. 73.
    Zellerhoff S, Götte A, Kirchhof P (2006) Antikoagulation bei Vorhofflimmern. Herzschr Elektrophys 17:89–94Google Scholar

Copyright information

© Steinkopff-Verlag 2006

Authors and Affiliations

  • U. Ravens
    • 1
  • E. Wettwer
    • 1
  • U. Schotten
    • 2
  • R. Weßel
    • 3
  • D. Dobrev
    • 1
  1. 1.Technische Universität Dresden, Institut für Pharmakologie und ToxikologieMedizinische Fakultät Carl Gustav CarusDresdenGermany
  2. 2.Department of PhysiologyUniversität of MaastrichtMaastrichtThe Netherlands
  3. 3.Klinik für KardiologieMedizinische Fakultät der Universität TübingenTübingenGermany

Personalised recommendations