Zeitschrift für Herz-,Thorax- und Gefäßchirurgie

, Volume 27, Issue 6, pp 419–423

Ventilatorinduzierte diaphragmale Dysfunktion in der Kardiochirurgie

Pathomechanismen, Besonderheiten und Therapieansätze
Stand der Wissenschaft

Zusammenfassung

Mechanische Beatmung ist lebensrettend für Patienten mit respiratorischer Insuffizienz oder der Notwendigkeit für eine tiefe Sedierung. Die resultierende Inaktivierung des Diaphragmas geht mit einer profunden Veränderung der muskulären Homöostase einher, die zu einer Muskelatrophie und Kraftreduktion des Diaphragmas führt. Der wichtigste Pathomechanismus ist die Generierung von oxidativem Stress, der letztendlich in einer Aktivierung der Apoptose resultiert. Die Geschwindigkeit unterscheidet sich deutlich von der peripherer Muskeln, sodass im Diaphragma bereits nach 18-stündiger Beatmung eine Atrophie um 30 % und ein 50 %iger Verlust der Kontraktionskraft nachweisbar ist. Dieser Beitrag gibt einen Überblick über die Pathomechanismen, die Besonderheiten des kardiochirurgischen Patientenguts und mögliche Therapieansätze geben.

Schlüsselwörter

Beatmung, künstlich Oxidativer Stress Muskelkontraktion Muskelatrophie Ventilator-Weaning 

Ventilatior-induced diaphragm dysfunction in cardiac surgery

Pathomechanisms, characteristics and therapy approaches

Abstract

Mechanical ventilation is life-saving for patients with respiratory failure or the necessity for deep sedation. The resulting inactivation of the diaphragm has been revealed to induce myofiber atrophy of around 30 % after 18 h of mechanical ventilation and a contractile deficit of up to 50 %. These profound changes are rooted in a disturbed cellular homeostasis which arises from an increase in oxidative stress and results in cellular apoptosis. This article gives an overview of the major pathomechanisms, the influence of comorbidities in cardiac surgery patients and possible treatment options.

Keywords

Respiration, artificial Oxidative stress Muscle contraction Muscular atrophy Ventilator weaning 

Literatur

  1. 1.
    Agten A, Maes K, Smuder A et al (2011) N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med 39:777–782PubMedCrossRefGoogle Scholar
  2. 2.
    Agten A, Maes K, Thomas D et al (2012) Bortezomib partially protects the rat diaphragm from ventilator-induced diaphragm dysfunction. Crit Care Med 40:2449–2455PubMedCrossRefGoogle Scholar
  3. 3.
    Bruells CS, Reiss LK, Smuder AJ et al (2012) Severity of ventilator induced lung injury does not contribute to ventilator induced diaphragmatic dysfunction. European Respiratory Society Congress, Vienna. (Abstract)Google Scholar
  4. 4.
    Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37:S354–S367PubMedCrossRefGoogle Scholar
  5. 5.
    Criswell DS, Shanely RA, Betters JJ et al (2003) Cumulative effects of aging and mechanical ventilation on in vitro diaphragm function. Chest 124:2302–2308PubMedCrossRefGoogle Scholar
  6. 6.
    Davis RT III, Bruells CS, Stabley JN et al (2012) Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake. Crit Care Med 40:2858–2866PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ebihara S, Hussain SN, Danialou G et al (2002) Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med 165:221–228PubMedCrossRefGoogle Scholar
  8. 8.
    Ermilov LG, Pulido JN, Atchison FW et al (2010) Impairment of diaphragm muscle force and neuromuscular transmission after normothermic cardiopulmonary bypass: effect of low-dose inhaled CO. Am J Physiol Regul Integr Comp Physiol 298:R784–789. DOI 10.1152/ajpregu.00737.2009PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Farkas GA, Gosselin LE, Zhan WZ et al (1994) Histochemical and mechanical properties of diaphragm muscle in morbidly obese Zucker rats. J Appl Physiol 77:2250–2259PubMedGoogle Scholar
  10. 10.
    Funkat AK, Beckmann A, Lewandowski J et al (2012) Cardiac surgery in Germany during 2011: a report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 60:371–382PubMedCrossRefGoogle Scholar
  11. 11.
    Futier E, Constantin JM, Combaret L et al (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12:R116PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gater DR Jr, Dolbow D, Tsui B, Gorgey AS (2011) Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 28:231–248PubMedGoogle Scholar
  13. 13.
    Gayan-Ramirez G, Testelmans D, Maes K et al (2005) Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Crit Care Med 33:2804–2809PubMedCrossRefGoogle Scholar
  14. 14.
    Hatcher H, Planalp R, Cho J et al (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652PubMedCrossRefGoogle Scholar
  15. 15.
    Huang TT, Deoghare HV, Smith BK et al (2011) Gene expression changes in the human diaphragm after cardiothoracic surgery. J Thorac Cardiovasc Surg 142:1214–1222, 1222.e1–20. DOI 10.1016/j.jtcvs.2011.02.025PubMedCrossRefGoogle Scholar
  16. 16.
    Hudson MB, Smuder AJ, Nelson WB et al (2012) Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med 40:1254–1260PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hussain SNA, Mofarrahi M, Sigala I et al (2010) Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Resp Crit Care Med 182:1377–1386PubMedCrossRefGoogle Scholar
  18. 18.
    Jaber S, Jung B, Matecki S et al (2011) Clinical review: ventilator-induced diaphragmatic dysfunction – human studies confirm animal model findings! Crit Care 15:206PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jaber S, Petrof BJ, Jung B et al (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371PubMedCrossRefGoogle Scholar
  20. 20.
    Levine S, Bashir MH, Clanton TL et al (2012) COPD elicits remodeling of the diaphragm and vastus lateralis muscles in humans. J Appl Phys. DOI 10.1152/japplphysiol.01121.2012 Google Scholar
  21. 21.
    Levine S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335PubMedCrossRefGoogle Scholar
  22. 22.
    Li X, Moody MR, Engel D et al (2000) Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102:1690–1696PubMedCrossRefGoogle Scholar
  23. 23.
    Maes K, Testelmans D, Cadot P et al (2008) Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Resp Crit Care Med 178:1219–1226PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Maes K, Testelmans D, Powers S et al (2007) Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats. Am J Resp Crit Care Med 175:1134–1138PubMedCrossRefGoogle Scholar
  25. 25.
    Mantilla CB, Sieck GC (2011) Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors. Respir Physiol Neurobiol 179:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    McClung JM, Judge AR, Talbert EE, Powers SK (2009) Calpain 1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol Cell Physiol 296:C363–C371PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    McClung JM, Kavazis AN, DeRuisseau KC et al (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 175:150–159PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    McClung JM, Van Gammeren D, Whidden MA et al (2009) Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation. Crit Care Med 37:1373–1379PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    McClung JM, Whidden MA, Kavazis AN et al (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294:R1608–R1617PubMedCrossRefGoogle Scholar
  30. 30.
    Meyer FJ, Borst MM, Zugck C et al (2001) Respiratory muscle dysfunction in congestive heart failure: clinical correlation and prognostic significance. Circulation 103:2153–2158PubMedCrossRefGoogle Scholar
  31. 31.
    Min K, Smuder AJ, Kwon OS et al (2011) Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol 111:1459–1466PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ochala J, Renaud G, Llano Diez M et al (2011) Diaphragm muscle weakness in an experimental porcine intensive care unit model. PloS One 6:e20558PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Orozco-Levi M, Gea J, Lloreta JL et al (1999) Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. Eur Respir J 13:371–378PubMedCrossRefGoogle Scholar
  34. 34.
    Ottenheijm CA, Heunks LM, Li YP et al (2006) Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174:997–1002PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Picard M, Jung B, Liang F et al (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140–1149PubMedCrossRefGoogle Scholar
  36. 36.
    Powers SK, Farkas GA, Demirel H et al (1996) Effects of aging and obesity on respiratory muscle phenotype in Zucker rats. J Appl Physiol 81:1347–1354PubMedGoogle Scholar
  37. 37.
    Powers SK, Hudson MB, Nelson WB et al (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759PubMedCrossRefGoogle Scholar
  38. 38.
    Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–R344PubMedCrossRefGoogle Scholar
  39. 39.
    Powers SK, Kavazis AN, Levine S (2009) Prolonged mechanical ventilation alters diaphragmatic structure and function. Crit Care Med 37:S347–S353PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Richardson PG, Briemberg H, Jagannath S et al (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120PubMedCrossRefGoogle Scholar
  41. 41.
    Sassoon CS, Zhu E, Pham HT et al (2008) Acute effects of high-dose methylprednisolone on diaphragm muscle function. Muscle Nerve 38:1161–1172PubMedCrossRefGoogle Scholar
  42. 42.
    Schellekens WJ, Van Hees HW, Vaneker M et al (2012) Toll-like receptor 4 signaling in ventilator-induced diaphragm atrophy. Anesthesiology 117:329–338PubMedCrossRefGoogle Scholar
  43. 43.
    Sexton WL, Poole DC (1998) Effects of emphysema on diaphragm blood flow during exercise. J Appl Physiol 84:971–979PubMedGoogle Scholar
  44. 44.
    Shanely RA, Van Gammeren D, DeRuisseau KC et al (2004) Mechanical ventilation depresses protein synthesis in the rat diaphragm. Am J Resp Crit Care Med 170:994–999PubMedCrossRefGoogle Scholar
  45. 45.
    Shanely RA, Zergeroglu MA, Lennon SL et al (2002) Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166:1369–1374PubMedCrossRefGoogle Scholar
  46. 46.
    Smuder AJ, Hudson MB, Nelson WB et al (2012) Nuclear factor-kappaB signaling contributes to mechanical ventilation-induced diaphragm weakness. Crit Care Med 40:927–934PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Smuder AJ, Kavazis AN, Hudson MB et al (2010) Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med 49:1152–1160PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Van Hees HW, Li YP, Ottenheijm CA et al (2008) Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 294:L1260–L1268CrossRefGoogle Scholar
  49. 49.
    Vaneker M, Heunks LMA, Joosten LA et al (2009) Mechanical ventilation induces a Toll/Interleukin-1 receptor domain-containing adapter-inducing interferon beta-dependent inflammatory response in healthy mice. Anesthesiology 111:836–843PubMedCrossRefGoogle Scholar
  50. 50.
    Zergeroglu MA, Mckenzie MJ, Shanely RA et al (2003) Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol 95:1116–1124PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Klinik für AnästhesiologieUniversitätsklinikum AachenAachenDeutschland
  2. 2.Klinik für Thorax-, Herz-, und GefäßchirurgieUniversitätsklinikum AachenAachenDeutschland

Personalised recommendations