Advertisement

Nuklearmedizinische Bildgebung an Herz und großen Gefäßen

State of the art
  • F.T. RangeEmail author
  • C. Wenning
  • K. Rahbar
  • O. Schober
  • M. Schäfers
Nachbardisziplinen
  • 147 Downloads

Zusammenfassung

Die verschiedenen Verfahren der nuklearmedizinischen Diagnostik bieten dem Herz-Thorax-Chirurgen essenzielle Informationen, die a priori keine andere diagnostische Disziplin zu bieten in der Lage ist; sie sind deshalb ein unabdingbarer Bestandteil gewissenhafter Therapieplanung und des Follow-up der meisten kardiochirurgischen Eingriffe an Herz und großen Gefäßen. Der vorliegende Artikel gibt einen Überblick über den Einsatz verschiedener Akquisitionstechniken, Radiopharmaka und Untersuchungsprotokolle in der nuklearmedizinischen kardiovaskulären Bildgebung und deren Stellenwert innerhalb der Diagnostik von Ischämien, Vitalitätseinschränkungen des Myokards, kardialen Tumoren, Entzündungen sowie der Indikationsstellung für Bypassoperationen, Herztransplantationen (prä- und postoperatives Monitoring), den Einsatz von Schrittmachern/Defibrillatoren und Klappeneingriffen. Darüber hinaus wagen die Autoren einen Ausblick auf die künftigen Entwicklungen: in naher Zukunft entstehen klinisch einsetzbare, vielversprechende fusionierte Bildgebungsverfahren, die die integrierte Bewertung von funktionellen und morphologischen Informationen deutlich voranbringen und so ein Mehr an Gesamtinformation als die Summe der Einzelinformationen der separaten Methoden liefern. Daneben wird die molekulare Bildgebung künftig mittels neuer radiochemischer Tracer eine prospektive Beurteilung der Entstehung kardiovaskulärer Probleme ermöglichen und insbesondere Fragen der Plaquediagnostik und des programmierten Zelltods klären helfen.

Schlüsselwörter

Nuklearkardiologische Diagnostik SPECT PET Myokardiale Vitalität Fusion Imaging Tracer 

Nuclear medicine imaging of the heart and large vessels

State of the art

Abstract

Using various nuclear medicine diagnostic methods, cardiothoracic surgeons can obtain essential information which cannot be provided by other diagnostic disciplines. Therefore, they are an essential element in treatment planning and follow-up of most cardiac surgery interventions on the heart and the large vessels. The present article summarizes the use of various acquisition techniques, radiopharmaceuticals, and examination protocols in cardiovascular nuclear medicine imaging and their value in the diagnosis of ischemia, myocardial viability, cardiac tumors, inflammation as well as indications for bypass operations, heart transplantations (pre- and postoperative monitoring), the use of pacemakers/defibrillators, and valve operations. In addition, the authors comment on possible future developments: new and promising combined imaging techniques in clinical medicine will advance the evaluation of functional and morphological information and, thus, deliver more overall information than the sum of the information obtained from the individual methods. In the future, molecular imaging with the help of new radiochemical tracers will facilitate the prospective evaluation of the formation of cardiovascular problems and help clarify questions concerning plaque formation and programmed cell death.

Keywords

Cardiac nuclear diagnostics SPECT PET Myocardial viability Fusion imaging Tracer 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Schäfers M, Bengel F, Büll U et al (2009) Position paper nuclear cardiology: update 2008. Nuklearmedizin 48:71–78PubMedGoogle Scholar
  2. 2.
    Hendel RC (2005) Attenuation correction: Eternal dilemma or real improvement? Q J Nucl Med Mol Imaging 49:30–42PubMedGoogle Scholar
  3. 3.
    Schwaiger M, Muzik O (1991) Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 21;67(14):35D–43DGoogle Scholar
  4. 4.
    American Society of Nuclear Cardiology (2001) Imaging guidelines for nuclear cardiology procedures (part 1) J Nucl Cardiol; Part 1.Vol.8.1Google Scholar
  5. 5.
    Merlet P, Valette H, Dubois-Rande JL et al (1994) Iodine 123-labeled metaiodobenzylguanidine imaging in heart disease. J Nucl Cardiol 1:S79–S85CrossRefPubMedGoogle Scholar
  6. 6.
    Schäfers M, Schober O, Lerch H (1998) Cardiac sympathetic neurotransmission scintigraphy. Eur J Nucl Med 25:435–441CrossRefPubMedGoogle Scholar
  7. 7.
    Iskandrian AS, Heo J, Kong B, Lyons E. (1989) Effect of exercise level on the ability of thallium-201 tomographic imaging in detecting coronary artery disease: Analysis of 461 patients. J Am Coll Cardiol 14:1477–1486CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta NC, Esterbrooks DJ, Hilleman DE, Mohiuddin SM (1992) Comparison of adenosine and exercise thallium-201 single-photon emission computed tomography (SPECT) myocardial perfusion imaging. The GE SPECT Multicenter Adenosine Study Group. J Am Coll Cardiol 19(2):248–257CrossRefPubMedGoogle Scholar
  9. 9.
    Ohtake T, Yokoyama I, Watanabe T et al (1995) Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 36(3):456–463PubMedGoogle Scholar
  10. 10.
    Hannan EL, Wu C, Walford G et al (2008) Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. N Engl J Med 24;358(4):331–341Google Scholar
  11. 11.
    Burt RW, Perkins OW, Oppenheim BE et al (1995) Direct comparison of fluorine-18-FDG SPECT, fluorine-18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 36(2):176–179PubMedGoogle Scholar
  12. 12.
    Zhang X, Liu X, Wu Q et al (2001). Clinical outcome of patients with previous myocardial infarction and left ventricular dysfunction assessed with myocardial (99m)Tc-MIBI SPECT and (18)F-FDG PET. J Nucl Med 42(8):1166–1173PubMedGoogle Scholar
  13. 13.
    Dahl J vom, Altehoefer C, Sheehan FH et al (1997) Effect of myocardial viability assessed by technetium-99m-sestamibi SPECT and fluorine-18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 38(5):742–748Google Scholar
  14. 14.
    Fouad-Tarazi FM, MacIntyre WJ (1990) Radionuclide methods for cardiac output determination. Eur Heart J 11(Suppl I):33–40PubMedGoogle Scholar
  15. 15.
    Bax JJ, Lamb H, Dibbets P et al (2000) Comparison of gated single-photon emission computed tomography with magnetic resonance imaging for evaluation of left ventricular function in ischemic cardiomyopathy. Am J Cardiol 86(12):1299–1305CrossRefPubMedGoogle Scholar
  16. 16.
    Usta E, Burgstahler C, Aebert H et al (2009) The challenge to detect heart transplant rejection and transplant vasculopathy non-invasively – a pilot study. J Cardiothorac Surg 4:43CrossRefPubMedGoogle Scholar
  17. 17.
    Rubin PJ, Hartman JJ, Hasapes JP et al (1996) Detection of cardiac transplant rejection with 111In-labeled lymphocytes and gamma scintigraphy. Circulation 94:II298–II303PubMedGoogle Scholar
  18. 18.
    Aparici CM, Narula J, Puig M et al (2000) Somatostatin receptor scintigraphy predicts impending cardiac allograft rejection before endomyocardial biopsy. Eur J Nucl Med 27:1754–1759CrossRefPubMedGoogle Scholar
  19. 19.
    Narula J, Acio ER, Narula N et al (2001) Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med 7:1347–1352CrossRefPubMedGoogle Scholar
  20. 20.
    Spes CH, Klauss V, Rieber J et al (1999) Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound. J Heart Lung Transplant 18:391–398CrossRefPubMedGoogle Scholar
  21. 21.
    Sablayrolles JL, Al Attar N, Nataf P (2004) New trends in non-invasive coronary angiography with multislice CT. Surg Technol Int 13:205–213PubMedGoogle Scholar
  22. 22.
    Elhendy A, Domburg RT van, Vantrimpont P et al (2002) Prediction of mortality in heart transplant recipients by stress technetium-99m tetrofosmin myocardial perfusion imaging. Am J Cardiol 89:964–968CrossRefPubMedGoogle Scholar
  23. 23.
    Puskás C, Kosch M, Kerber S et al (1997) Progressive heterogeneity of myocardial perfusion in heart transplant recipients detected by thallium-201 myocardial SPECT. J Nucl Med 38:760–765PubMedGoogle Scholar
  24. 24.
    Jimenez J, Donahay T, Schofield L et al (2005) Smooth muscle cell proliferation index correlates with 111In-labeled antibody Z2D3 uptake in a transplant vasculopathy swine model. J Nucl Med 46:514–519PubMedGoogle Scholar
  25. 25.
    Rigo P (1991) Quantification of mitral insufficiency by radionuclide techniques. Eur Heart J 12:15–18PubMedGoogle Scholar
  26. 26.
    Inoue Y, Suzuki A, Shirouzu I et al (2003) Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 10:623–632CrossRefPubMedGoogle Scholar
  27. 27.
    Momose M, Kobayashi H, Iguchi N et al (1999) Comparison of parameters of 123I-MIBG scintigraphy for predicting prognosis in patients with dilated cardiomyopathy. Nucl Med Commun 20:529–535CrossRefPubMedGoogle Scholar
  28. 28.
    Schäfers M, Dutka D, Rhodes CG et al (1998) Myocardial pre- and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 82:57–62PubMedGoogle Scholar
  29. 29.
    Wichter T, Schäfers M, Rhodes CG et al (2000) Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 101:1552–1558PubMedGoogle Scholar
  30. 30.
    Schäfers M, Wichter T, Lerch H et al (1999) Cardiac 123I-MIBG uptake in idiopathic ventricular tachycardia and fibrillation. J Nucl Med 40:1–5PubMedGoogle Scholar
  31. 31.
    Agostini D, Babatasi G, Galateau F et al (1999) Detection of cardiac myxoma by F-18 FDG PET. Clin Nucl Med 24:159–160CrossRefPubMedGoogle Scholar
  32. 32.
    Nguyen JD, Carrasquillo JA, Little RF et al (2003) Fluorodeoxyglucose positron emission tomography in the presence of cardiac metastases. Clin Nucl Med 28:979–980CrossRefPubMedGoogle Scholar
  33. 33.
    Rudd J, Warburton E, Fryer T et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105(23):2708–2711CrossRefPubMedGoogle Scholar
  34. 34.
    Gorenberg M, Bar-Shalom R, Israel O (2008) Patterns of FDG uptake in post-thoracotomy surgical scars in patients with lung cancer. Br J Radiol 81(970):821–825CrossRefPubMedGoogle Scholar
  35. 35.
    Van Riet J, Hill E, Gheysens O et al (2010) (18)F-FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis. Eur J Nucl Med Mol ImagingGoogle Scholar
  36. 36.
    Bax JJ, Beanlands RS, Klocke FJ et al (2007) Diagnostic and clinical perspectives of fusion imaging in cardiology: is the total greater than the sum of its parts? Heart 93(1):16–22CrossRefPubMedGoogle Scholar
  37. 37.
    Büther F, Schäfers KP, Stegger L et al (2006) Artifacts caused by contrast agents and patient movement in cardiac PET-CT. Nuklearmedizin 45(5):N53–N54PubMedGoogle Scholar
  38. 38.
    Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50(4):563–568CrossRefPubMedGoogle Scholar
  39. 39.
    Pichler B, Kolb A, Nägele T, Schlemmer H-P (2010) PET/MRI: Paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336CrossRefPubMedGoogle Scholar
  40. 40.
    Tan KT, Lip GY (2008) Imaging of the unstable plaque. Int J Cardiol 18Google Scholar
  41. 41.
    Sarai M, Hartung D, Petrov A et al (2007) Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 11;50(24):2305–2312Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • F.T. Range
    • 1
    Email author
  • C. Wenning
    • 2
  • K. Rahbar
    • 3
  • O. Schober
    • 3
  • M. Schäfers
    • 2
  1. 1.Medizinische Klinik und Poliklinik C – Kardiologie und AngiologieUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.European Institute for Molecular Imaging – EIMIUniversität MünsterMünsterDeutschland
  3. 3.Klinik und Poliklinik für NuklearmedizinUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations