Tranexamsäure als antifibrinolytische Alternative zu Aprotinin bei kinderherzchirurgischen Eingriffen

  • P. Deetjen
  • N. Sinzobahamvya
  • C. Arentz
  • J. Reckers
  • B. Asfour
  • E. Schindler
Originalarbeit
  • 77 Downloads

Zusammenfassung

Hintergrund

Gegenüber dem in der Kinderherzchirurgie bis 2006 häufig verwendeten Aprotinin sind massive Sicherheitsbedenken geäußert wurden. Dies hat in unserer Klinik zu einer Umstellung der antifibrinolytischen Therapie von Aprotinin auf Tranexamsäure geführt.

Material und Methoden

In einer retrospektiven Beobachtungsstudie wurden herzchirurgische Kinder untersucht, die innerhalb zweier verschiedener Zeiträume entweder ausschließlich Aprotinin (n=70) oder Tranexamsäure (n=70) erhalten hatten. Eingeschlossen wurden alle Kinder mit zyanotischem Herzvitium, Gewicht unter 10 kg oder Reoperation.

Ergebnisse

Hinsichtlich des Blutverlusts, der Transfusion von Erythrozytenkonzentraten und FFP ergaben sich keine Unterschiede. Lediglich die intraoperativ verabreichte Menge an Thrombozytenkonzentraten war in der Tranexamsäuregruppe um 31 ml (p=0,013) erhöht. Intensivaufenthaltszeit, Nierenfunktionswerte und Rethorakotomierate unterschieden sich nicht signifikant.

Schlussfolgerung

Die vorliegende Studie gibt Hinweise dafür, dass im Bereich der kongenitalen Herzchirurgie Aprotinin adäquat durch Tranexamsäure ersetzt werden kann.

Schlüsselwörter

Tranexamsäure Aprotinin Kinderherzchirurgie Antifibrinolytika Bluttransfusionen 

Tranexamic acid as an antifibrinolytic alternative to aprotinin in pediatric congenital heart surgery

Abstract

Background

Concerns about safety of aprotinin in adult patients arose in 2006, which had a dramatic impact on the use of aprotinin. Due to these safety concerns, we replaced aprotinin with tranexamic acid in our congenital cardiac surgical program.

Methods

In this retrospective study, we compared two different groups of children undergoing cardiac surgery before and after replacing aprotinin with tranexamic acid. The first group (n = 70) included children receiving only aprotinin before our change. The second group (n = 70) included children receiving only tranexamic acid after the change. Data from all children with cyanotic heart failure, weighing under 10 kg or children undergoing repeat cardiac surgery, were collected.

Results

Perioperatively and postoperatively, similar amounts of red cells and FFP were transfused. However, perioperatively, children in the tranexamic acid group received 31 ml (p = 0.013) more platelets. No statistical differences were found in postoperative blood loss, creatinine values or in the incidence of rethoracotomies and early deaths.

Conclusion

The results of this study suggest that in pediatric cardiac surgery tranexamic acid is an adequate alternative for aprotinin.

Keywords

Tranexamic acid Aprotinin Pediatric cardiac surgery Antifibrinolytics Blood transfusion 

Literatur

  1. 1.
    Albisetti M (2003) The fibrinolytic system in children. Semin Thromb Hemost 29:339–348CrossRefPubMedGoogle Scholar
  2. 2.
    Arnold DM, Fergusson DA, Chan AK et al (2006) Avoiding transfusions in children undergoing cardiac surgery: a meta-analysis of randomized trials of aprotinin. Anesth Analg 102:731–737CrossRefPubMedGoogle Scholar
  3. 3.
    Backer CL, Kelle AM, Stewart RD et al (2007) Aprotinin is safe in pediatric patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 134:1421–1426CrossRefPubMedGoogle Scholar
  4. 4.
    Boldt J, Knothe C, Zickmann B et al (1993) Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations. Influence on platelet function and blood loss. J Thorac Cardiovasc Surg 105:705–711PubMedGoogle Scholar
  5. 5.
    Breuer T, Martin K, Wilhelm M et al (2008) The blood sparing effect and the safety of aprotinin compared to tranexamic acid in pediatric cardiac surgery. Eur J Cardiothorac Surg 35(1):167–171CrossRefPubMedGoogle Scholar
  6. 6.
    Brown JR (2009) Mortality manifesto: a meta-analysis of aprotinin and tranexamic acid mortality. Eur J Cardiothorac SurgGoogle Scholar
  7. 7.
    Brown JR, Birkmeyer NJ, O’Connor GT (2007) Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 115:2801–2813CrossRefPubMedGoogle Scholar
  8. 8.
    Bulutcu FS, Ozbek U, Polat B et al (2005) Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin or a combination? Paediatr Anaesth 15:41–46CrossRefPubMedGoogle Scholar
  9. 9.
    Carrel TP, Schwanda M, Vogt PR, Turina MI (1998) Aprotinin in pediatric cardiac operations: a benefit in complex malformations and with high-dose regimens only. Ann Thorac Surg 66:153–158CrossRefPubMedGoogle Scholar
  10. 10.
    Chauhan S, Das SN, Bisoi A et al (2004) Comparison of epsilon aminocaproic acid and tranexamic acid in pediatric cardiac surgery. J Cardiothorac Vasc Anesth 18:141–143CrossRefPubMedGoogle Scholar
  11. 11.
    Chiravuri SD, Voepel-Lewis T, Devaney EJ, Malviya S (2008) The use of aprotinin in children undergoing operative repair of isolated atrial septal defects. Paediatr Anaesth 18:145–150PubMedGoogle Scholar
  12. 12.
    Corwin HL, Gettinger A, Pearl RG et al (2004) The CRIT Study: Anemia and blood transfusion in the critically ill--current clinical practice in the United States. Crit Care Med 32:39–52CrossRefPubMedGoogle Scholar
  13. 13.
    Davies MJ, Allen A, Kort H et al (1997) Prospective, randomized, double-blind study of high-dose aprotinin in pediatric cardiac operations. Ann Thorac Surg 63:497–503CrossRefPubMedGoogle Scholar
  14. 14.
    Dietrich W (2009) Aprotinin: 1 year on. Curr Opin Anaesthesiol 22:121–127CrossRefPubMedGoogle Scholar
  15. 15.
    Dietrich W, Spannagl M, Boehm J et al (2008) Tranexamic acid and aprotinin in primary cardiac operations: an analysis of 220 cardiac surgical patients treated with tranexamic acid or aprotinin. Anesth Analg 107:1469–1478CrossRefPubMedGoogle Scholar
  16. 16.
    Eaton MP (2008) Antifibrinolytic therapy in surgery for congenital heart disease. Anesth Analg 106:1087–1091CrossRefPubMedGoogle Scholar
  17. 17.
    Fergusson DA, Hebert PC, Mazer CD et al (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358:2319–2331CrossRefPubMedGoogle Scholar
  18. 18.
    Furtmuller R, Schlag MG, Berger M et al (2002) Tranexamic acid, a widely used antifibrinolytic agent, causes convulsions by a gamma-aminobutyric acid(A) receptor antagonistic effect. J Pharmacol Exp Ther 301:168–173CrossRefPubMedGoogle Scholar
  19. 19.
    Henry D, Carless P, Fergusson D, Laupacis A (2009) The safety of aprotinin and lysine-derived antifibrinolytic drugs in cardiac surgery: a meta-analysis. CMAJ 180:183–193PubMedGoogle Scholar
  20. 20.
    Henry DA, Carless PA, Moxey AJ et al (2007) Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev CD001886Google Scholar
  21. 21.
    Jaggers J, Lawson JH (2006) Coagulopathy and inflammation in neonatal heart surgery: mechanisms and strategies. Ann Thorac Surg 81:S2360–S2366CrossRefPubMedGoogle Scholar
  22. 22.
    Jaquiss RD, Ghanayem NS, Zacharisen MC et al (2002) Safety of aprotinin use and re-use in pediatric cardiothoracic surgery. Circulation 106:190–194Google Scholar
  23. 23.
    Jobes DR, Nicolson SC, Steven JM, Manno CS (1993) Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg 55:1283–1284PubMedGoogle Scholar
  24. 24.
    Kern FH, Morana NJ, Sears JJ, Hickey PR (1992) Coagulation defects in neonates during cardiopulmonary bypass. Ann Thorac Surg 54:541–546PubMedCrossRefGoogle Scholar
  25. 25.
    Kluth M, Lueth JU, Zittermann A et al (2008) Safety of low-dose aprotinin in coronary artery bypass graft surgery: a single-centre investigation in 2,436 patients in Germany. Drug Saf 31:617–626CrossRefPubMedGoogle Scholar
  26. 26.
    Kneyber MC, Hersi MI, Twisk JW et al (2007) Red blood cell transfusion in critically ill children is independently associated with increased mortality. Intensive Care Med 33:1414–1422CrossRefPubMedGoogle Scholar
  27. 27.
    Lacour-Gayet F, Clarke D, Jacobs J et al (2004) The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur J Cardiothorac Surg 25:911–924CrossRefPubMedGoogle Scholar
  28. 28.
    Lacroix J, Hebert PC, Hutchison JS et al (2007) Transfusion strategies for patients in pediatric intensive care units. N Engl J Med 356:1609–1619CrossRefPubMedGoogle Scholar
  29. 29.
    Later AF, Maas JJ, Engbers FH et al (2009) Tranexamic acid and aprotinin in low- and intermediate-risk cardiac surgery: a non-sponsored, double-blind, randomised, placebo-controlled trial. Eur J Cardiothorac Surg 36:322–329CrossRefPubMedGoogle Scholar
  30. 30.
    Levin E, Wu J, Devine DV et al (2000) Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost 83:54–59PubMedGoogle Scholar
  31. 31.
    Mangano DT, Miao Y, Vuylsteke A et al (2007) Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 297:471–479CrossRefPubMedGoogle Scholar
  32. 32.
    Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354:353–365CrossRefPubMedGoogle Scholar
  33. 33.
    Martin K, Wiesner G, Breuer T et al (2008) The risks of aprotinin and tranexamic acid in cardiac surgery: a one-year follow-up of 1188 consecutive patients. Anesth Analg 107:1783–1790CrossRefPubMedGoogle Scholar
  34. 34.
    Moore RA, McNicholas KW, Naidech H et al (1985) Clinically silent venous thrombosis following internal and external jugular central venous cannulation in pediatric cardiac patients. Anesthesiology 62:640–643PubMedGoogle Scholar
  35. 35.
    Murugesan C, Banakal SK, Garg R et al (2008) The efficacy of aprotinin in arterial switch operations in infants. Anesth Analg 107:783–787CrossRefPubMedGoogle Scholar
  36. 36.
    Ngaage DL, Cale AR, Cowen ME et al (2008) Aprotinin in primary cardiac surgery: operative outcome of propensity score-matched study. Ann Thorac Surg 86:1195–1202CrossRefPubMedGoogle Scholar
  37. 37.
    Olenchock SA Jr, Lee PH, Yehoshua T et al (2008) Impact of aprotinin on adverse clinical outcomes and mortality up to 12 years in a registry of 3,337 patients. Ann Thorac Surg 86:560–566CrossRefPubMedGoogle Scholar
  38. 38.
    Pagano D, Howell NJ, Freemantle N et al (2008) Bleeding in cardiac surgery: the use of aprotinin does not affect survival. J Thorac Cardiovasc Surg 135:495–502CrossRefPubMedGoogle Scholar
  39. 39.
    Pellegrini A, Giaretta D, Chemello R et al (1982) Feline generalized epilepsy induced by tranexamic acid (AMCA). Epilepsia 23:35–45CrossRefPubMedGoogle Scholar
  40. 40.
    Reid RW, Zimmerman AA, Laussen PC et al (1997) The efficacy of tranexamic acid versus placebo in decreasing blood loss in pediatric patients undergoing repeat cardiac surgery. Anesth Analg 84:990–996CrossRefPubMedGoogle Scholar
  41. 41.
    Royston D (1998) Aprotinin versus lysine analogues: the debate continues. Ann Thorac Surg 65:S9–S19CrossRefPubMedGoogle Scholar
  42. 42.
    Schneeweiss S, Seeger JD, Landon J, Walker AM (2008) Aprotinin during coronary-artery bypass grafting and risk of death. N Engl J Med 358:771–783CrossRefPubMedGoogle Scholar
  43. 43.
    Sethna NF, Zurakowski D, Brustowicz RM et al (2005) Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology 102:727–732CrossRefPubMedGoogle Scholar
  44. 44.
    Shaw AD, Stafford-Smith M, White WD et al (2008) The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med 358:784–793CrossRefPubMedGoogle Scholar
  45. 45.
    Sinzobahamvya N, Photiadis J, Kumpikaite D et al (2006) Comprehensive Aristotle score: implications for the Norwood procedure. Ann Thorac Surg 81:1794–1800CrossRefPubMedGoogle Scholar
  46. 46.
    Szekely A, Sapi E, Breuer T et al (2008) Aprotinin and renal dysfunction after pediatric cardiac surgery. Paediatr Anaesth 18:151–159PubMedGoogle Scholar
  47. 47.
    Wang X, Zheng Z, Ao H et al (2009) A comparison before and after aprotinin was suspended in cardiac surgery: Different results in the real world from a single cardiac center in China. J Thorac Cardiovasc SurgGoogle Scholar
  48. 48.
    Williams GD, Bratton SL, Riley EC, Ramamoorthy C (1998) Association between age and blood loss in children undergoing open heart operations. Ann Thorac Surg 66:870–875CrossRefPubMedGoogle Scholar
  49. 49.
    Williams GD, Ramamoorthy C, Pentcheva K et al (2008) A randomized, controlled trial of aprotinin in neonates undergoing open-heart surgery. Paediatr Anaesth 18:812–819CrossRefPubMedGoogle Scholar
  50. 50.
    Zonis Z, Seear M, Reichert C et al (1996) The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg 111:982–987CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • P. Deetjen
    • 1
  • N. Sinzobahamvya
    • 2
  • C. Arentz
    • 2
  • J. Reckers
    • 3
  • B. Asfour
    • 2
  • E. Schindler
    • 1
  1. 1.Zentrum für KinderanästhesiologieAsklepios Klinik Sankt AugustinSankt AugustinDeutschland
  2. 2.Kinderherz- und ThoraxchirurgieAsklepios Klinik Sankt AugustinSankt AugustinDeutschland
  3. 3.Kardiochirurgische IntensivmedizinAsklepios Klinik Sankt AugustinSankt AugustinDeutschland

Personalised recommendations