Pathophysiologie, Prophylaxe und Therapie von Herzchirurgie-assoziierten Nierenfunktionsstörungen

Eine Stellungnahme der Arbeitsgruppe Niere des gemeinschaftlichen Arbeitskreises Intensivmedizin von DGAI und DGTHG unter Berücksichtigung der Konsensus-Empfehlungen der Acute Dialysis Quality Initiative
  • M. Heringlake
  • D. Kindgen-Milles
  • F. Hackmann
  • N. Haake
  • J. Kielstein
  • M. Lance
  • H. Lufft
  • S. Just
  • B. Trabold
  • A. Scherlitz
  • U. Schirmer
  • D. Schmitt
  • O. Vargas-Hein
  • A. Markewitz
Perioperative Medizin

Zusammenfassung

Nur wenige Komplikationen in der Herzchirurgie haben einen vergleichbar negativen Einfluss auf die Prognose des Patienten wie perioperative Nierenfunktionsstörungen, die heute unter der Abkürzung CSA-AKI („cardiac surgery-associated acute kidney injury“) zusammengefasst werden: bereits geringfügige Veränderungen des postoperativen Plasmakreatinins sind mit einer relevanten Prognoseverschlechterung assoziiert.

Die vorliegende Arbeit stellt eine aktualisierte und erweiterte Zusammenfassung kürzlich publizierter Konsensus-Statements der Acute Dialysis Quality Initiative (ADQI) zum Themenkomplex CSA-AKI dar und gibt einen Überblick über die Epidemiologie dieser Komplikation, die nach gegenwärtigem Verständnis beteiligten pathophysiologischen Mechanismen, prophylaktische Maßnahmen und therapeutische Ansätze.

Während zum gegenwärtigen Zeitpunkt kein pharmakologischer Ansatz bekannt ist, der sich in großen prospektiven Studien als effizient erwiesen hätte, eine postoperative Nierenfunktionsstörung zu vermeiden, zeigt die Zusammenstellung der pathophysiologischen Mechanismen deutlich, dass zahlreiche derjenigen Faktoren, die zu einer perioperativen Nierenfunktionsstörung beitragen, unter Einbindung aller beteiligten Fachdisziplinen durchaus klinisch modifizierbar und im Sinne guter klinischer Praxis mit den Zielen: Vermeidung endogener und exogener Noxen, Normoglykämie, Aufrechterhaltung einer adäquaten systemischen Perfusion, Euvolämie und eines, dem individuellen Verbrauch angemessenen Sauerstoffangebots sowie Vermeidung embolischer Komplikationen positiv beeinflusst werden können. Im Umkehrschluss kann CSA-AKI – zumindest partiell – auch als Ausdruck eines suboptimalen klinischen Managements betrachtet werden, welches klinikindividuell und interdisziplinär in Angriff genommen werden sollte.

Die Therapiekonzepte, die zur Behandlung des etablierten CSA-AKI zum Einsatz kommen, unterscheiden sich nicht grundlegend von den Vorgehensweisen, die bei Patienten mit Nierenfunktionsstörungen anderer Ätiologie angewendet werden. Allerdings scheint bei herzchirurgischen Patienten die frühzeitige Initiierung einer Nierenersatztherapie – bevor urämische Komplikationen auftreten – mit einer günstigeren Prognose verknüpft zu sein. Die Gabe von Schleifendiuretika hat keinen positiven Einfluss auf den Verlauf des CSA-AKI. Auch die Gabe von Dopamin in „Nierendosis“ ist nicht geeignet, eine Nierenfunktionsstörung zu verhindern oder sinnvoll zu behandeln.

Schlüsselwörter

Herzchirurgie Akutes Nierenversagen Niereninsuffizienz 

Pathophysiology, prophylaxis, and treatment of cardiac surgery-associated kidney injury

Position of the working group renal failure of the collaborative group Cardiothoracic Intensive Care of the DGAI and DGTHG on the consensus statement of the Acute Dialysis Quality Initiative

Abstract

Few complications in cardiac surgery have such a negative impact on patient prognosis as perioperative renal dysfunction, now called cardiac surgery-associated acute kidney injury (CSA-AKI): even the slightest increases in postoperative plasma creatinine are associated with a relevant worsening of prognosis.

The present manuscript is an updated and extended summary of the recently published consensus statement of the Acute Dialysis Quality Initiative (ADQI) on CSA-AKI intended to give an overview of the epidemiological and pathophysiological mechanisms of this complication and interventions aimed to prevent and treat it.

At present, no pharmacological approach has been shown to be effective in large scale prospective randomized trials to prevent CSA-AKI. In contrast, the pathophysiological mechanisms behind this complication are highly suggestive that many of the factors associated with CSA-AKI may be modified into a positive direction by implementing an interdisciplinary approach with the clinical goals: prevention of endogeneous and exogeneous nephrotoxins, maintenance of normoglycemia, adequate systemic perfusion pressure and flow, and euvolemia, adjusting systemic oxygen delivery to demand, and by avoidance of embolic complications. Thus, CSA-AKI may – at least in part – be reflective of a suboptimal clinical management that can be optimized according to the individual center.

The therapy of established CSA-AKI does not differ from treatment of acute renal failure of other etiology. However, published data suggest that the early institution of renal replacement therapy, i.e., before uremic complications have occurred, may be associated with an improved prognosis. The use of loop diuretics is not beneficial and may be even harmful, and renal dose dopamine does not prevent CSA-AKI or constitute a reasonable treatment of this complication.

Keywords

Cardiac surgery Acute kidney injury Chronic kidney disease 

Literatur

  1. 1.
    Bellomo R, Auriemma S, Fabbri A et al (2008) The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs 31:166–178PubMedGoogle Scholar
  2. 2.
    Schetz M, Bove T, Morelli A et al (2008) Prevention of cardiac surgery-associated acute kidney injury. Int J Artif Organs 31:179–189PubMedGoogle Scholar
  3. 3.
    Tolwani A, Paganini E, Joannidis M et al (2008) Treatment of patients with cardiac surgery associated-acute kidney injury. Int J Artif Organs 31:190–196PubMedGoogle Scholar
  4. 4.
    Hoste EA, Cruz DN, Davenport A et al (2008) The epidemiology of cardiac surgery-associated acute kidney injury. Int J Artif Organs 31:158–165PubMedGoogle Scholar
  5. 5.
    Ronco C, Kellum JA, Bellomo R (2008) Cardiac surgery-associated acute kidney injury. Int J Artif Organs 31:156–157PubMedGoogle Scholar
  6. 6.
    Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31PubMedCrossRefGoogle Scholar
  7. 7.
    Mangano CM, Diamondstone LS, Ramsay JG et al (1998) Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 128:194–203PubMedGoogle Scholar
  8. 8.
    Bundesgeschäftsstelle für Qualitätssicherung (BQS-online.org) Ergebnisse der Qualitätssicherung HerzchirurgieGoogle Scholar
  9. 9.
    Heringlake M, Knappe M, Vargas-Hein O et al (2006) Renal dysfunction according to the ADQI-RIFLE system and clinical practice patterns after cardiac surgery in Germany. Minerva Anestesiol 72:645–654PubMedGoogle Scholar
  10. 10.
    Lassnigg A, Schmidlin D, Mouhieddine M et al (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605PubMedCrossRefGoogle Scholar
  11. 11.
    Lassnigg A, Schmid ER, Hiesmayr M et al (2008) Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure? Crit Care Med 36:1129–1137PubMedCrossRefGoogle Scholar
  12. 12.
    Stafford-Smith M, Patel UD, Phillips-Bute BG et al (2008) Acute kidney injury and chronic kidney disease after cardiac surgery. Adv Chronic Kidney Dis 15:257–277PubMedCrossRefGoogle Scholar
  13. 13.
    Wijeysundera DN, Karkouti K, Beattie WS et al (2006) Improving the identification of patients at risk of postoperative renal failure after cardiac surgery. Anesthesiology 104:65–72PubMedCrossRefGoogle Scholar
  14. 14.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  15. 15.
    Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470PubMedGoogle Scholar
  16. 16.
    Brosius FC 3rd, Hostetter TH, Kelepouris E et al (2006) Detection of chronic kidney disease in patients with or at increased risk of cardiovascular disease: a science advisory from the American Heart Association Kidney And Cardiovascular Disease Council; the Councils on High Blood Pressure Research, Cardiovascular Disease in the Young and Epidemiology and Prevention; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: developed in collaboration with the National Kidney Foundation. Circulation 114:1083–1087PubMedCrossRefGoogle Scholar
  17. 17.
    Huerta-Alardin AL, Varon J, Marik PE (2005) Bench-to-bedside review: Rhabdomyolysis – an overview for clinicians. Crit Care 9:158–169PubMedCrossRefGoogle Scholar
  18. 18.
    Holt S, Moore K (2000) Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol 8:72–76PubMedCrossRefGoogle Scholar
  19. 19.
    Moore KP, Holt SG, Patel RP et al (1998) A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem 273:31731–31737PubMedCrossRefGoogle Scholar
  20. 20.
    Miller CC 3rd, Villa MA, Achouh P et al (2008) Intraoperative skeletal muscle ischemia contributes to risk of renal dysfunction following thoracoabdominal aortic repair. Eur J Cardiothorac Surg 33:691–694PubMedCrossRefGoogle Scholar
  21. 21.
    Miller CC 3rd, Villa MA, Sutton J et al (2009) Serum myoglobin and renal morbidity and mortality following thoracic and thoraco-abdominal aortic repair: does rhabdomyolysis play a role? Eur J Vasc Endovasc Surg 37:388–394PubMedCrossRefGoogle Scholar
  22. 22.
    De Freitas Carvalho DA, Valezi AC, De Brito EM et al (2006) Rhabdomyolysis after bariatric surgery. Obes Surg 16:740–744CrossRefGoogle Scholar
  23. 23.
    Wigfield CH, Lindsey JD, Munoz A et al (2006) Is extreme obesity a risk factor for cardiac surgery? An analysis of patients with a BMI >or=40. Eur J Cardiothorac Surg 29:434–440PubMedCrossRefGoogle Scholar
  24. 24.
    Hofmann D, Buettner M, Rissner F et al (2007) Prognostic value of serum myoglobin in patients after cardiac surgery. J Anesth 21:304–310PubMedCrossRefGoogle Scholar
  25. 25.
    Vercaemst L (2008) Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol 40:257–267PubMedGoogle Scholar
  26. 26.
    Haase M, Haase-Fielitz A, Bagshaw SM et al (2007) Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib Nephrol 156:340–353PubMedCrossRefGoogle Scholar
  27. 27.
    Haase M, Haase-Fielitz A, Bellomo R et al (2009) Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med 37:39–47PubMedCrossRefGoogle Scholar
  28. 28.
    Pannu N, Nadim MK (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36:S216–S223PubMedCrossRefGoogle Scholar
  29. 29.
    Benedetto U, Sciarretta S, Roscitano A et al (2008) Preoperative Angiotensin-converting enzyme inhibitors and acute kidney injury after coronary artery bypass grafting. Ann Thorac Surg 86:1160–1165PubMedCrossRefGoogle Scholar
  30. 30.
    Arora P, Rajagopalam S, Ranjan R et al (2008) Preoperative use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. Clin J Am Soc Nephrol 3:1266–1273PubMedCrossRefGoogle Scholar
  31. 31.
    Ryckwaert F, Colson P, Ribstein J et al (2001) Haemodynamic and renal effects of intravenous enalaprilat during coronary artery bypass graft surgery in patients with ischaemic heart dysfunction. Br J Anaesth 86:169–175PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner F, Yeter R, Bisson S et al (2003) Beneficial hemodynamic and renal effects of intravenous enalaprilat following coronary artery bypass surgery complicated by left ventricular dysfunction. Crit Care Med 31:1421–1428PubMedCrossRefGoogle Scholar
  33. 33.
    Ranucci M, Ballotta A, Kunkl A et al (2008) Influence of the timing of cardiac catheterization and the amount of contrast media on acute renal failure after cardiac surgery. Am J Cardiol 101:1112–1118PubMedCrossRefGoogle Scholar
  34. 34.
    Mockel M, Radovic M, Kuhnle Y et al (2008) Acute renal haemodynamic effects of radiocontrast media in patients undergoing left ventricular and coronary angiography. Nephrol Dial Transplant 23:1588–1594PubMedCrossRefGoogle Scholar
  35. 35.
    Heyman SN, Rosenberger C, Rosen S (2005) Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy. Nephrol Dial Transplant 20(Suppl 1):i6–i11PubMedCrossRefGoogle Scholar
  36. 36.
    Dangas G, Lakovou L, Nikolsky E et al (2005) Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol 95:13–19PubMedCrossRefGoogle Scholar
  37. 37.
    Nikolsky E, Mehran R, Lasic Z et al (2005) Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int 67:706–713PubMedCrossRefGoogle Scholar
  38. 38.
    Carson JL, Scholz PM, Chen AY et al (2002) Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol 40:418–423PubMedCrossRefGoogle Scholar
  39. 39.
    Doddakula K, Al-Sarraf N, Gately K et al (2007) Predictors of acute renal failure requiring renal replacement therapy post cardiac surgery in patients with preoperatively normal renal function. Interact Cardiovasc Thorac Surg 6:314–318PubMedCrossRefGoogle Scholar
  40. 40.
    Halkos ME, Puskas JD, Lattouf OM et al (2008) Elevated preoperative hemoglobin A1c level is predictive of adverse events after coronary artery bypass surgery. J Thorac Cardiovasc Surg 136:631–640PubMedCrossRefGoogle Scholar
  41. 41.
    Ouattara A, Lecomte P, Le Manach Y et al (2005) Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 103:687–694PubMedCrossRefGoogle Scholar
  42. 42.
    Doenst T, Wijeysundera D, Karkouti K et al (2005) Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 130:1144PubMedCrossRefGoogle Scholar
  43. 43.
    Ascione R, Rogers CA, Rajakaruna C et al (2008) Inadequate blood glucose control is associated with in-hospital mortality and morbidity in diabetic and nondiabetic patients undergoing cardiac surgery. Circulation 118:113–123PubMedCrossRefGoogle Scholar
  44. 44.
    Esposito K, Nappo F, Marfella R et al (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–2072PubMedCrossRefGoogle Scholar
  45. 45.
    Ranucci M, De Toffol B, Isgro G et al (2006) Hyperlactatemia during cardiopulmonary bypass: determinants and impact on postoperative outcome. Crit Care 10:R167PubMedCrossRefGoogle Scholar
  46. 46.
    Heringlake M, Wernerus M, Grunefeld J et al (2007) The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care 11:R51PubMedCrossRefGoogle Scholar
  47. 47.
    Van Den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367CrossRefGoogle Scholar
  48. 48.
    Finfer S, Chittock DR, Su SY et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297PubMedCrossRefGoogle Scholar
  49. 49.
    Griesdale DE, De Souza RJ, Van Dam RM et al (2009) Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ 180:821–827PubMedGoogle Scholar
  50. 50.
    Lecomte P, Van Vlem B, Coddens J et al (2008) Tight perioperative glucose control is associated with a reduction in renal impairment and renal failure in non-diabetic cardiac surgical patients. Crit Care 12:R154PubMedCrossRefGoogle Scholar
  51. 51.
    Gandhi GY, Nuttall GA, Abel MD et al (2007) Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized trial. Ann Intern Med 146:233–243PubMedGoogle Scholar
  52. 52.
    Lipshutz AK, Gropper MA (2009) Perioperative glycemic control: an evidence-based review. Anesthesiology 110:408–421PubMedGoogle Scholar
  53. 53.
    Lecomte P, Foubert L, Nobels F et al (2008) Dynamic tight glycemic control during and after cardiac surgery is effective, feasible and safe. Anesth Analg 107:51–58PubMedCrossRefGoogle Scholar
  54. 54.
    Legrand M, Mik EG, Johannes T et al (2008) Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 14:502–516PubMedCrossRefGoogle Scholar
  55. 55.
    Abuelo JG (2007) Normotensive ischemic acute renal failure. N Engl J Med 357:797–805PubMedCrossRefGoogle Scholar
  56. 56.
    Urzua J, Troncoso S, Bugedo G et al (1992) Renal function and cardiopulmonary bypass: effect of perfusion pressure. J Cardiothorac Vasc Anesth 6:299–303PubMedCrossRefGoogle Scholar
  57. 57.
    Fischer UM, Weissenberger WK, Warters RD et al (2002) Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion 17:401–406PubMedCrossRefGoogle Scholar
  58. 58.
    Shanmugam G (2005) Vasoplegic syndrome-the role of methylene blue. Eur J Cardiothorac Surg 28:705–710PubMedCrossRefGoogle Scholar
  59. 59.
    Hobbhahn J, Habazettl H, Conzen P et al (1991) Complications caused by protamine. 1: Pharmacology and pathophysiology. Anaesthesist 40:365–374PubMedGoogle Scholar
  60. 60.
    Hobbhahn J, Habazettl H, Conzen P et al (1991) Complications caused by protamine. 2. Therapy and prevention. Anaesthesist 40:421–428PubMedGoogle Scholar
  61. 61.
    Brienza N, Giglio MT, Marucci M et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090PubMedCrossRefGoogle Scholar
  62. 62.
    Kaczmarczyk G, Vogel S, Krebs M et al (1996) Vasopressin and renin-angiotensin maintain arterial pressure during PEEP in nonexpanded, conscious dogs. Am J Physiol 271:R1396–R1402PubMedGoogle Scholar
  63. 63.
    Boldt J, Brenner T, Lehmann A et al (2003) Is kidney function altered by the duration of cardiopulmonary bypass? Ann Thorac Surg 75:906–912PubMedCrossRefGoogle Scholar
  64. 64.
    Ranucci M, Romitti F, Isgro G et al (2005) Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 80:2213–2220PubMedCrossRefGoogle Scholar
  65. 65.
    Valentine S, Barrowcliffe M, Peacock J (1993) A comparison of effects of fixed and tailored cardiopulmonary bypass flowrates on renal function. Anaesth Intensive Care 21:304–308PubMedGoogle Scholar
  66. 66.
    Fiore G, Brienza N, Cicala P et al (2006) Superior mesenteric artery blood flow modifications during off-pump coronary surgery. Ann Thorac Surg 82:62–67PubMedCrossRefGoogle Scholar
  67. 67.
    Blauth CI, Cosgrove DM, Webb BW et al (1992) Atheroembolism from the ascending aorta. An emerging problem in cardiac surgery. J Thorac Cardiovasc Surg 103:1104–1111; discussion 1111–1112PubMedGoogle Scholar
  68. 68.
    Davila-Roman VG, Kouchoukos NT, Schechtman KB et al (1999) Atherosclerosis of the ascending aorta is a predictor of renal dysfunction after cardiac operations. J Thorac Cardiovasc Surg 117:111–116PubMedCrossRefGoogle Scholar
  69. 69.
    Charytan DM, Marulkar S (2006) Relationship of aortic atherosclerosis to acute renal failure following cardiac surgery. J Nephrol 19:628–633PubMedGoogle Scholar
  70. 70.
    Scolari F, Ravani P, Pola A et al (2003) Predictors of renal and patient outcomes in atheroembolic renal disease: a prospective study. J Am Soc Nephrol 14:1584–1590PubMedCrossRefGoogle Scholar
  71. 71.
    Scolari F, Tardanico R, Zani R et al (2000) Cholesterol crystal embolism: A recognizable cause of renal disease. Am J Kidney Dis 36:1089–1109PubMedGoogle Scholar
  72. 72.
    Van Zaane B, Zuithoff NP, Reitsma JB et al (2008) Meta-analysis of the diagnostic accuracy of transesophageal echocardiography for assessment of atherosclerosis in the ascending aorta in patients undergoing cardiac surgery. Acta Anaesthesiol Scand 52:1179–1187Google Scholar
  73. 73.
    Shann KG, Likosky DS, Murkin JM et al (2006) An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution and the inflammatory response. J Thorac Cardiovasc Surg 132:283–290PubMedCrossRefGoogle Scholar
  74. 74.
    Svenarud P, Persson M, Van Der Linden J (2004) Effect of CO2 insufflation on the number and behavior of air microemboli in open-heart surgery: a randomized clinical trial. Circulation 109:1127–1132PubMedCrossRefGoogle Scholar
  75. 75.
    Reston JT, Tregear SJ, Turkelson CM (2003) Meta-analysis of short-term and mid-term outcomes following off-pump coronary artery bypass grafting. Ann Thorac Surg 76:1510–1515PubMedCrossRefGoogle Scholar
  76. 76.
    Cheng DC, Bainbridge D, Martin JE et al (2005) Does off-pump coronary artery bypass reduce mortality, morbidity, and resource utilization when compared with conventional coronary artery bypass? A meta-analysis of randomized trials. Anesthesiology 102:188–203PubMedCrossRefGoogle Scholar
  77. 77.
    Panesar SS, Athanasiou T, Nair S et al (2006) Early outcomes in the elderly: a meta-analysis of 4921 patients undergoing coronary artery bypass grafting-comparison between off-pump and on-pump techniques. Heart 92:1808–1816PubMedCrossRefGoogle Scholar
  78. 78.
    Wagener G, Gubitosa G, Wang S et al (2009) A comparison of urinary neutrophil gelatinase-associated lipocalin in patients undergoing on- versus off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 23:195–199PubMedCrossRefGoogle Scholar
  79. 79.
    Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520PubMedCrossRefGoogle Scholar
  80. 80.
    Nigwekar SU, Kandula P (2009) N-acetylcysteine in cardiovascular-surgery-associated renal failure: a meta-analysis. Ann Thorac Surg 87:139–147PubMedCrossRefGoogle Scholar
  81. 81.
    Ho KM, Morgan DJ (2009) Meta-analysis of N-acetylcysteine to prevent acute renal failure after major surgery. Am J Kidney Dis 53:33–40PubMedCrossRefGoogle Scholar
  82. 82.
    Naughton F, Wijeysundera D, Karkouti K et al (2008) N-acetylcysteine to reduce renal failure after cardiac surgery: a systematic review and meta-analysis. Can J Anaesth 55:827–835PubMedCrossRefGoogle Scholar
  83. 83.
    Tanaka K, Weihrauch D, Kehl F et al (2002) Mechanism of preconditioning by isoflurane in rabbits: a direct role for reactive oxygen species. Anesthesiology 97:1485–1490PubMedCrossRefGoogle Scholar
  84. 84.
    Wijeysundera DN, Karkouti K, Rao V et al (2009) N-acetylcysteine is associated with increased blood loss and blood product utilization during cardiac surgery. Crit Care Med 37:1929–1934PubMedCrossRefGoogle Scholar
  85. 85.
    Landoni G, Biondi-Zoccai GG, Zangrillo A et al (2007) Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 21:502–511PubMedCrossRefGoogle Scholar
  86. 86.
    Lee HT, Kim M, Kim N et al (2007) Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am J Physiol Renal Physiol 293:F713–F722PubMedCrossRefGoogle Scholar
  87. 87.
    Lee HT, Ota-Setlik A, Fu Y et al (2004) Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 101:1313–1324PubMedCrossRefGoogle Scholar
  88. 88.
    Julier K, Da Silva R, Garcia C et al (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327PubMedCrossRefGoogle Scholar
  89. 89.
    Heringlake M (2002) Cardio-renal-axis-physiology, pathophysiology and clinical relevance? Anasthesiol Intensivmed Notfallmed Schmerzther 37:250–257PubMedCrossRefGoogle Scholar
  90. 90.
    Riddez L, Hahn RG, Brismar B et al (1997) Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit Care Med 25:635–640PubMedCrossRefGoogle Scholar
  91. 91.
    Hynynen M, Salmenpera M, Harjula AI et al (1990) Atrial pressure and hormonal and renal responses to acute cardiac tamponade. Ann Thorac Surg 49:632–637PubMedGoogle Scholar
  92. 92.
    Clerico A, Recchia FA, Passino C et al (2006) Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol 290:H17–H29PubMedCrossRefGoogle Scholar
  93. 93.
    McGuinness J, Bouchier-Hayes D, Redmond JM (2008) Understanding the inflammatory response to cardiac surgery. Surgeon 6:162–171PubMedCrossRefGoogle Scholar
  94. 94.
    McBride WT (2007) Mediators of inflammation at cardiac surgery. Appl Cardiopulm Pathophysiol 11:4–22Google Scholar
  95. 95.
    Heymans S, Hirsch E, Anker SD et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129PubMedCrossRefGoogle Scholar
  96. 96.
    Deng MC, Dasch B, Erren M et al (1996) Impact of left ventricular dysfunction on cytokines, hemodynamics and outcome in bypass grafting. Ann Thorac Surg 62:184–190PubMedCrossRefGoogle Scholar
  97. 97.
    Baker RC, Armstrong MA, Allen SJ et al (2002) Role of the kidney in perioperative inflammatory responses. Br J Anaesth 88:330–334PubMedCrossRefGoogle Scholar
  98. 98.
    Tripepi G, Mallamaci F, Zoccali C (2005) Inflammation markers, adhesion molecules and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J Am Soc Nephrol 16(Suppl 1):S83–S88PubMedCrossRefGoogle Scholar
  99. 99.
    Wan L, Bagshaw SM, Langenberg C et al (2008) Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med 36:S198–S203PubMedCrossRefGoogle Scholar
  100. 100.
    Wang W, Zolty E, Falk S et al (2006) Pentoxifylline protects against endotoxin-induced acute renal failure in mice. Am J Physiol Renal Physiol 291:F1090–F1095PubMedCrossRefGoogle Scholar
  101. 101.
    Liakopoulos OJ, Choi YH, Haldenwang PL et al (2008) Impact of preoperative statin therapy on adverse postoperative outcomes in patients undergoing cardiac surgery: a meta-analysis of over 30,000 patients. Eur Heart J 29:1548–1559PubMedCrossRefGoogle Scholar
  102. 102.
    Huffmyer JL, Mauermann WJ, Thiele RH et al (2009) Preoperative statin administration is associated with lower mortality and decreased need for postoperative hemodialysis in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 23:468–473PubMedCrossRefGoogle Scholar
  103. 103.
    Fedoruk LM, Wang H, Conaway MR et al (2008) Statin therapy improves outcomes after valvular heart surgery. Ann Thorac Surg 85:1521–1525PubMedCrossRefGoogle Scholar
  104. 104.
    Tang AT, Alexiou C, Hsu J et al (2002) Leukodepletion reduces renal injury in coronary revascularization: a prospective randomized study. Ann Thorac Surg 74:372–377PubMedCrossRefGoogle Scholar
  105. 105.
    Boldt J, Brosch C, Lehmann A et al (2004) The prophylactic use of the beta-blocker esmolol in combination with phosphodiesterase III inhibitor enoximone in elderly cardiac surgery patients. Anesth Analg 99:1009–1017PubMedCrossRefGoogle Scholar
  106. 106.
    Boldt J, Brosch C, Piper SN et al (2001) Influence of prophylactic use of pentoxifylline on postoperative organ function in elderly cardiac surgery patients. Crit Care Med 29:952–958PubMedCrossRefGoogle Scholar
  107. 107.
    Sandek A, Rauchhaus M, Anker SD et al (2008) The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care 11:632–639PubMedCrossRefGoogle Scholar
  108. 108.
    Geppert A, Huber K (2004) Inflammation and cardiovascular diseases: lessons that can be learned for the patient with cardiogenic shock in the intensive care unit. Curr Opin Crit Care 10:347–353PubMedCrossRefGoogle Scholar
  109. 109.
    Geppert A, Dorninger A, Delle-Karth G et al (2006) Plasma concentrations of interleukin-6, organ failure, vasopressor support and successful coronary revascularization in predicting 30-day mortality of patients with cardiogenic shock complicating acute myocardial infarction. Crit Care Med 34:2035–2042PubMedCrossRefGoogle Scholar
  110. 110.
    Lenz A, Franklin GA, Cheadle WG (2007) Systemic inflammation after trauma. Injury 38:1336–1345PubMedCrossRefGoogle Scholar
  111. 111.
    Kinugawa T, Kato M, Ogino K et al (2003) Interleukin-6 and tumor necrosis factor-alpha levels increase in response to maximal exercise in patients with chronic heart failure. Int J Cardiol 87:83–90PubMedCrossRefGoogle Scholar
  112. 112.
    Matsuoka T (1990) A sedative effect of dopamine on the respiratory burst in neonatal polymorphonuclear leukocytes. Pediatr Res 28:24–27PubMedCrossRefGoogle Scholar
  113. 113.
    Sookhai S, Wang JH, Winter D et al (2000) Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock 14:295–299PubMedCrossRefGoogle Scholar
  114. 114.
    Boldt J, Brosch C, Suttner S et al (2002) Prophylactic use of the phospodiesterase III inhibitor enoximone in elderly cardiac surgery patients: effect on hemodynamics, inflammation and markers of organ function. Intensive Care Med 28:1462–1469PubMedCrossRefGoogle Scholar
  115. 115.
    Fabre O, Vincentelli A, Corseaux D et al (2008) Comparison of blood activation in the wound, active vent and cardiopulmonary bypass circuit. Ann Thorac Surg 86:537–541PubMedCrossRefGoogle Scholar
  116. 116.
    Marcheix B, Carrier M, Martel C et al (2008) Effect of pericardial blood processing on postoperative inflammation and the complement pathways. Ann Thorac Surg 85:530–535PubMedCrossRefGoogle Scholar
  117. 117.
    Carl M, Alms A, Braun J et al (2007) Guidelines for intensive care in cardiac surgery patients: haemodynamic monitoring and cardio-circulatory treatment guidelines of the German Society for Thoracic and Cardiovascular Surgery and the German Society of Anaesthesiology and Intensive Care Medicine. Thorac Cardiovasc Surg 55:130–148PubMedCrossRefGoogle Scholar
  118. 118.
    Sumeray M, Robertson C, Lapsley M et al (2001) Low dose dopamine infusion reduces renal tubular injury following cardiopulmonary bypass surgery. J Nephrol 14:397–402PubMedGoogle Scholar
  119. 119.
    Yavuz S, Ayabakan N, Goncu MT et al (2002) Effect of combined dopamine and diltiazem on renal function after cardiac surgery. Med Sci Monit 8:PI45–PI50PubMedGoogle Scholar
  120. 120.
    Woo EB, Tang AT, El-Gamel A et al (2002) Dopamine therapy for patients at risk of renal dysfunction following cardiac surgery: science or fiction? Eur J Cardiothorac Surg 22:106–111PubMedCrossRefGoogle Scholar
  121. 121.
    Myles PS, Buckland MR, Schenk NJ et al (1993) Effect of „renal-dose“ dopamine on renal function following cardiac surgery. Anaesth Intensive Care 21:56–61PubMedGoogle Scholar
  122. 122.
    Friedrich JO, Adhikari N, Herridge MS et al (2005) Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 142:510–524PubMedGoogle Scholar
  123. 123.
    Ranucci M, Soro G, Barzaghi N et al (2004) Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg 78:1332–1337PubMedCrossRefGoogle Scholar
  124. 124.
    Caimmi PP, Pagani L, Micalizzi E et al (2003) Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 17:491–494PubMedCrossRefGoogle Scholar
  125. 125.
    Cogliati AA, Vellutini R, Nardini A et al (2007) Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth 21:847–850PubMedCrossRefGoogle Scholar
  126. 126.
    Bove T, Landoni G, Calabro MG et al (2005) Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 111:3230–3235PubMedCrossRefGoogle Scholar
  127. 127.
    Landoni G, Biondi-Zoccai GG, Marino G et al (2008) Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth 22:27–33PubMedCrossRefGoogle Scholar
  128. 128.
    Lassnigg A, Donner E, Grubhofer G et al (2000) Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 11:97–104PubMedGoogle Scholar
  129. 129.
    Lombardi R, Ferreiro A, Servetto C (2003) Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail 25:775–786PubMedCrossRefGoogle Scholar
  130. 130.
    Mahesh B, Yim B, Robson D et al (2008) Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. Eur J Cardiothorac Surg 33:370–376PubMedCrossRefGoogle Scholar
  131. 131.
    Sezai A, Shiono M, Orime Y et al (2000) Low-dose continuous infusion of human atrial natriuretic peptide during and after cardiac surgery. Ann Thorac Surg 69:732–738PubMedCrossRefGoogle Scholar
  132. 132.
    Hummel M, Kuhn M, Bub A et al (1992) Urodilatin: a new peptide with beneficial effects in the postoperative therapy of cardiac transplant recipients. Clin Invest 70:674–682CrossRefGoogle Scholar
  133. 133.
    Hummel M, Kuhn M, Bub A et al (1993) Urodilatin, a new therapy to prevent kidney failure after heart transplantation. J Heart Lung Transplant 12:209–217PubMedGoogle Scholar
  134. 134.
    Mentzer RM Jr, Oz MC, Sladen RN et al (2007) Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA Trial. J Am Coll Cardiol 49:716–726PubMedCrossRefGoogle Scholar
  135. 135.
    Chen HH, Sundt TM, Cook DJ et al (2007) Low dose nesiritide and the preservation of renal function in patients with renal dysfunction undergoing cardiopulmonary-bypass surgery: a double-blind placebo-controlled pilot study. Circulation 116:I134–I138PubMedCrossRefGoogle Scholar
  136. 136.
    Aaronson KD, Sackner-Bernstein J (2006) Risk of death associated with nesiritide in patients with acutely decompensated heart failure. JAMA 296:1465–1466PubMedCrossRefGoogle Scholar
  137. 137.
    Sackner-Bernstein JD, Skopicki HA, Aaronson KD (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111:1487–1491PubMedCrossRefGoogle Scholar
  138. 138.
    Yallop KG, Sheppard SV, Smith DC (2008) The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia 63:576–582PubMedCrossRefGoogle Scholar
  139. 139.
    Smith MN, Best D, Sheppard SV et al (2008) The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia 63:701–704PubMedCrossRefGoogle Scholar
  140. 140.
    Kaya K, Oguz M, Akar AR et al (2007) The effect of sodium nitroprusside infusion on renal function during reperfusion period in patients undergoing coronary artery bypass grafting: a prospective randomized clinical trial. Eur J Cardiothorac Surg 31:290–297PubMedCrossRefGoogle Scholar
  141. 141.
    Kramer BK, Preuner J, Ebenburger A et al (2002) Lack of renoprotective effect of theophylline during aortocoronary bypass surgery. Nephrol Dial Transplant 17:910–915PubMedCrossRefGoogle Scholar
  142. 142.
    McBride WT, Allen S, Gormley SM et al (2004) Methylprednisolone favourably alters plasma and urinary cytokine homeostasis and subclinical renal injury at cardiac surgery. Cytokine 27:81–89PubMedCrossRefGoogle Scholar
  143. 143.
    Kulka PJ, Tryba M, Zenz M (1996) Preoperative alpha2-adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med 24:947–952PubMedCrossRefGoogle Scholar
  144. 144.
    Parikh CR, Devarajan P (2008) New biomarkers of acute kidney injury. Crit Care Med 36:S159–S165PubMedCrossRefGoogle Scholar
  145. 145.
    Kellum JA, Decker M (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29:1526–1531PubMedCrossRefGoogle Scholar
  146. 146.
    Bellomo R, Chapman M, Finfer S et al (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356:2139–2143PubMedCrossRefGoogle Scholar
  147. 147.
    Lauschke A, Teichgraber UK, Frei U et al (2006) Low-dose dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69:1669–1674PubMedCrossRefGoogle Scholar
  148. 148.
    Tumlin JA, Finkel KW, Murray PT et al (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46:26–34PubMedCrossRefGoogle Scholar
  149. 149.
    Brienza N, Malcangi V, Dalfino L et al (2006) A comparison between fenoldopam and low-dose dopamine in early renal dysfunction of critically ill patients. Crit Care Med 34:707–714PubMedCrossRefGoogle Scholar
  150. 150.
    Anderson RJ, Linas SI, Berns AS et al (1977) Nonoliguric acute renal failure. N Engl J Med 296:1134–1138PubMedCrossRefGoogle Scholar
  151. 151.
    Bagshaw SM, Delaney A, Haase M et al (2007) Loop diuretics in the management of acute renal failure: a systematic review and meta-analysis. Crit Care Resusc 9:60–68PubMedGoogle Scholar
  152. 152.
    Kleinknecht D, Ganeval D, Gonzalez-Duque LA et al (1976) Furosemide in acute oliguric renal failure. A controlled trial. Nephron 17:51–58PubMedCrossRefGoogle Scholar
  153. 153.
    Mehta RL, Pascual MT, Soroko S et al (2002) Diuretics, mortality and nonrecovery of renal function in acute renal failure. JAMA 288:2547–2553PubMedCrossRefGoogle Scholar
  154. 154.
    Hasselblad V, Gattis Stough W, Shah MR et al (2007) Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail 9:1064–1069PubMedCrossRefGoogle Scholar
  155. 155.
    Karajala V, Mansour W, Kellum JA (2009) Diuretics in acute kidney injury. Minerva Anestesiol 75:251–257PubMedGoogle Scholar
  156. 156.
    Sirivella S, Gielchinsky I, Parsonnet V (2000) Mannitol, furosemide and dopamine infusion in postoperative renal failure complicating cardiac surgery. Ann Thorac Surg 69:501–506PubMedCrossRefGoogle Scholar
  157. 157.
    Visweswaran P, Massin EK, Dubose TD Jr (1997) Mannitol-induced acute renal failure. J Am Soc Nephrol 8:1028–1033PubMedGoogle Scholar
  158. 158.
    Allgren RL, Marbury TC, Rahman SN et al (1997) Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med 336:828–834PubMedCrossRefGoogle Scholar
  159. 159.
    Lewis J, Salem MM, Chertow GM et al (2000) Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis 36:767–774PubMedCrossRefGoogle Scholar
  160. 160.
    Sward K, Valsson F, Odencrants P et al (2004) Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med 32:1310–1315PubMedCrossRefGoogle Scholar
  161. 161.
    Beaver TM, Winterstein AG, Shuster JJ et al (2006) Effectiveness of nesiritide on dialysis or all-cause mortality in patients undergoing cardiothoracic surgery. Clin Cardiol 29:18–24PubMedCrossRefGoogle Scholar
  162. 162.
    Chow SL, Peng JT, Okamoto MP et al (2007) Effect of nesiritide infusion duration on renal function in acutely decompensated heart failure patients. Ann Pharmacother 41:556–561PubMedCrossRefGoogle Scholar
  163. 163.
    Witteles RM, Kao D, Christopherson D et al (2007) Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction a randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol 50:1835–1840PubMedCrossRefGoogle Scholar
  164. 164.
    Wiebe K, Meyer M, Wahlers T et al (1996) Acute renal failure following cardiac surgery is reverted by administration of Urodilatin (INN: Ularitide). Eur J Med Res 1:259–265PubMedGoogle Scholar
  165. 165.
    Meyer M, Pfarr E, Schirmer G et al (1999) Therapeutic use of the natriuretic peptide ularitide in acute renal failure. Ren Fail 21:85–100PubMedCrossRefGoogle Scholar
  166. 166.
    Hoffmann H, Markewitz A, Kreuzer E et al (1998) Pentoxifylline decreases the incidence of multiple organ failure in patients after major cardio-thoracic surgery. Shock 9:235–240PubMedCrossRefGoogle Scholar
  167. 167.
    Vesey DA, Cheung C, Pat B et al (2004) Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 19:348–355PubMedCrossRefGoogle Scholar
  168. 168.
    Gibney N, Hoste E, Burdmann EA et al (2008) Timing of initiation and discontinuation of renal replacement therapy in AKI: unanswered key questions. Clin J Am Soc Nephrol 3:876–880PubMedCrossRefGoogle Scholar
  169. 169.
    Meyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357:1316–1325PubMedCrossRefGoogle Scholar
  170. 170.
    Palevsky PM (2008) Indications and timing of renal replacement therapy in acute kidney injury. Crit Care Med 36:S224–S228PubMedCrossRefGoogle Scholar
  171. 171.
    Bellomo R, Ronco C, Kellum JA et al (2004) Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212PubMedCrossRefGoogle Scholar
  172. 172.
    Seabra VF, Balk EM, Liangos O et al (2008) Timing of renal replacement therapy initiation in acute renal failure: a meta-analysis. Am J Kidney Dis 52:272–284PubMedCrossRefGoogle Scholar
  173. 173.
    Durmaz I, Yagdi T, Calkavur T et al (2003) Prophylactic dialysis in patients with renal dysfunction undergoing on-pump coronary artery bypass surgery. Ann Thorac Surg 75:859–864PubMedCrossRefGoogle Scholar
  174. 174.
    Bouman CS, Oudemans-Van Straaten HM, Tijssen JG et al (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 30:2205–2211PubMedCrossRefGoogle Scholar
  175. 175.
    Demirkilic U, Kuralay E, Yenicesu M et al (2004) Timing of replacement therapy for acute renal failure after cardiac surgery. J Card Surg 19:17–20PubMedCrossRefGoogle Scholar
  176. 176.
    Ronco C, Ricci Z (2008) Renal replacement therapies: physiological review. Intensive Care Med 34:2139–2146PubMedCrossRefGoogle Scholar
  177. 177.
    Forni LG, Hilton PJ (1997) Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med 336:1303–1309PubMedCrossRefGoogle Scholar
  178. 178.
    Berbece AN, Richardson RM (2006) Sustained low-efficiency dialysis in the ICU: cost, anticoagulation and solute removal. Kidney Int 70:963–968PubMedCrossRefGoogle Scholar
  179. 179.
    Kielstein JT, Hafer C (2006) Extended dialysis in intensive care: Korff dialysis rediscovered. Nephrologe 70:963–968Google Scholar
  180. 180.
    Rabindranath K, Adams J, Macleod AM et al (2007) Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev:CD003773Google Scholar
  181. 181.
    Bagshaw SM, Berthiaume LR, Delaney A et al (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 36:610–617PubMedCrossRefGoogle Scholar
  182. 182.
    Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430PubMedGoogle Scholar
  183. 183.
    Paganini EP, Kanagasundaram NS, Larive B et al (2001) Prescription of adequate renal replacement in critically ill patients. Blood Purif 19:238–244PubMedCrossRefGoogle Scholar
  184. 184.
    KDOQI (2006) Clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease. Am J Kidney Dis 47:S11–S145CrossRefGoogle Scholar
  185. 185.
    Eloot S, Van Biesen W, Dhondt A et al (2008) Impact of hemodialysis duration on the removal of uremic retention solutes. Kidney Int 73:765–770PubMedCrossRefGoogle Scholar
  186. 186.
    Ronco C (2006) Recent evolution of renal replacement therapy in the critically ill patient. Crit Care 10:123PubMedCrossRefGoogle Scholar
  187. 187.
    Conger JD (1975) A controlled evaluation of prophylactic dialysis in post-traumatic acute renal failure. J Trauma 15:1056–1063PubMedCrossRefGoogle Scholar
  188. 188.
    Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310PubMedCrossRefGoogle Scholar
  189. 189.
    Ronco C, Bellomo R, Homel P et al (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30PubMedCrossRefGoogle Scholar
  190. 190.
    Saudan P, Niederberger M, De Seigneux S et al (2006) Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int 70:1312–1317PubMedCrossRefGoogle Scholar
  191. 191.
    Tolwani AJ, Campbell RC, Stofan BS et al (2008) Standard versus high-dose CVVHDF for ICU-related acute renal failure. J Am Soc Nephrol 19:1233–1238PubMedCrossRefGoogle Scholar
  192. 192.
    Palevsky PM, Zhang JH, O’Connor TZ et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20PubMedCrossRefGoogle Scholar
  193. 193.
    Faulhaber-Walter R, Hafer C, Jahr N et al (2009) The Hannover Dialysis Outcome study: comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant 24:2179–2186PubMedCrossRefGoogle Scholar
  194. 194.
    Kielstein JT (2009) Dosis der Nierenersatztherapie bei akutem Nierenversagen. Dtsch Med Wochenschr 134:1–3CrossRefGoogle Scholar
  195. 195.
    Honore PM, Jamez J, Wauthier M et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–3587PubMedCrossRefGoogle Scholar
  196. 196.
    Vesconi S, Cruz DN, Fumagalli R et al (2009) Delivered dose of renal replacement therapy and mortality in critically ill patients with acute kidney injury. Crit Care 13:R57PubMedCrossRefGoogle Scholar
  197. 197.
    Chertow GM, Levy EM, Hammermeister KE et al (1998) Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104:343–348PubMedCrossRefGoogle Scholar
  198. 198.
    Hamada Y, Kawachi K, Tsunooka N et al (2004) Capillary leakage in cardiac surgery with cardiopulmonary bypass. Asian Cardiovasc Thorac Ann 12:193–197PubMedGoogle Scholar
  199. 199.
    Loeffelbein F, Zirell U, Benk C et al (2008) High colloid oncotic pressure priming of cardiopulmonary bypass in neonates and infants: implications on haemofiltration, weight gain and renal function. Eur J Cardiothorac Surg 34:648–652PubMedCrossRefGoogle Scholar
  200. 200.
    Martin FL, Chen HH, Cataliotti A et al (2008) Targeting the kidney in acute decompensated heart failure: conventional diuretics and renal-acting vasodilators. Rev Cardiovasc Med 9:39–45PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. Heringlake
    • 1
  • D. Kindgen-Milles
    • 2
  • F. Hackmann
    • 1
  • N. Haake
    • 3
  • J. Kielstein
    • 4
  • M. Lance
    • 5
  • H. Lufft
    • 6
  • S. Just
    • 7
  • B. Trabold
    • 8
  • A. Scherlitz
    • 9
  • U. Schirmer
    • 10
  • D. Schmitt
    • 11
  • O. Vargas-Hein
    • 12
  • A. Markewitz
    • 13
  1. 1.Klinik für AnästhesiologieUniversität zu LübeckLübeckDeutschland
  2. 2.Klinik für AnästhesiologieUniversitätsklinikum DüsseldorfDüsseldorfDeutschland
  3. 3.Klinik für HerzchirurgieChristian-Albrechts-Universität KielKielDeutschland
  4. 4.Klinik für Nieren- und HochdruckerkrankungenMedizinische Hochschule HannoverHannoverDeutschland
  5. 5.Klinik für AnästhesiologieUniversitätsklinikum MaastrichtMaastrichtNiederlande
  6. 6.Klinik für HerzchirurgieDeutsches Herzzentrum BerlinBerlinDeutschland
  7. 7.Klinik für HerzchirurgieSana Herzzentrum CottbusCottbusDeutschland
  8. 8.Klinik für AnästhesiologieUniversität RegensburgRegensburgDeutschland
  9. 9.Klinik für HerzchirurgieHelios-Klinikum KrefeldKrefeldDeutschland
  10. 10.Institut für AnästhesiologieHerzzentrum Nordrhein-WestfalenBad OeynhausenDeutschland
  11. 11.Klinik für HerzchirurgieHerzentrum LeipzigLeipzigDeutschland
  12. 12.Klinik für Anästhesiologie und IntensivmedizinCharité UniversitätsmedizinBerlinDeutschland
  13. 13.Klinik für Herz- und GefäßchirurgieBundeswehrzentralkrankenhaus KoblenzKoblenzDeutschland

Personalised recommendations