Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improved gelation of polysaccharides with the formation of phase-separated networks using the giant squid hydrolysates


Fish protein hydrolysates have garnered much attention owing to their beneficial properties and potential application. In this study, the effect of different hydrolysis times (4 h, 8 h) of the giant squid hydrolysates (GSHs) on rheological properties and microstructure of konjac glucomannan-κ-carrageenan-locust bean gum gel (P gel) was observed in this study. Rheological measurement showed that GSH-P gels obtained higher viscoelastic modulus and stronger interaction, corresponding to the micro-phase separation of polysaccharides-proteins/peptides and large junction zones, as observed by confocal laser scanning microscopy. The molecular weight distribution and ζ-potential results indicated that the molecular weight and charge density of 4 h-GSH was higher than those of 8 h-GSH, resulting in a greater degree of phase separation from polysaccharides. In conclusion, GSHs can be used as a reinforcing agent for polysaccharide gels to adjust the gel texture, providing a theoretical basis for the development of new gel products.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Andrade RJ, Azevedo AG, Musampa RM, Maia JM (2010) Thermo-rheological behavior of model protein–polysaccharide mixtures. Rheol Acta 49:401–410. https://doi.org/10.1007/s00397-010-0431-3

  2. Brenner T, Wang Z, Achayuthakan P, Nakajima T, Nishinari K (2013) Rheology and synergy of kappa-carrageenan/locust bean gum/konjac glucomannan gels. Carbohydr Polym 98:754–760. https://doi.org/10.1016/j.carbpol.2013.04.020

  3. Çakır E, Foegeding EA (2011) Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocoll 25:1538–1546. https://doi.org/10.1016/j.foodhyd.2011.02.002

  4. Chalamaiah M, Dinesh Kumar B, Hemalatha R, Jyothirmayi T (2012) Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food junction zones 135:3020–3038 doi:https://doi.org/10.1016/j.foodchem.2012.06.100

  5. Chan HW-S (1984) Biophysical methods in food research. Blackwell, London

  6. Cui X, Yu F, Xue Y, Zhang T, Ji L, Wang Y, Xue C (2018) Effects of mixing ratio and pH on the electrostatic interactions of hydrolyzed Alaska pollock protein and kappa-carrageenan. J Food Sci 83:2176–2182. https://doi.org/10.1111/1750-3841.14099

  7. Di Mattia CD, Sacchetti G, Neri L, Giacintucci V, Cerolini V, Mastrocola D, Pittia P (2018) Egg yolk gels: sol-gel transition and mechanical properties as affected by oleuropein enrichment. Food Hydrocoll 84:435–440. https://doi.org/10.1016/j.foodhyd.2018.06.023

  8. Donato L, Garnier C, Novales B, Durand S, Doublier JL (2005) Heat-induced gelation of bovine serum albumin/low-methoxyl pectin systems and the effect of calcium ions. Biomacromolecules 6:374–385. https://doi.org/10.1021/bm040061f

  9. Egerton S, Culloty S, Whooley J, Stanton C, Ross RP (2018) Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem 245:698–706. https://doi.org/10.1016/j.foodchem.2017.10.107

  10. Fioramonti SA, Perez AA, Aríngoli EE, Rubiolo AC, Santiago LG (2014) Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. Food Hydrocoll 35:129–136. https://doi.org/10.1016/j.foodhyd.2013.05.001

  11. Firoozmand H, Murray BS, Dickinson E (2009) Microstructure and rheology of phase-separated gels of gelatin + oxidized starch. Food Hydrocoll 23:1081–1088. https://doi.org/10.1016/j.foodhyd.2008.07.013

  12. Gabriele D, de Cindio B, D'Antona P (2001) A weak gel model for foods. Rheol Acta 40:120–127. https://doi.org/10.1007/s003970000139

  13. Guan X, Yao H, Chen Z, Shan L, Zhang M (2007) Some functional properties of oat bran protein concentrate modified by trypsin. Food Chem 101:163–170. https://doi.org/10.1016/j.foodchem.2006.01.011

  14. Guo Q, Bellissimo N, Rousseau D (2017) Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocoll 69:264–272. https://doi.org/10.1016/j.foodhyd.2017.01.037

  15. Hasanvand E, Rafe A (2018) Rheological and structural properties of rice bran protein-flaxseed ( Linum usitatissimum L.) gum complex coacervates. Food Hydrocoll 83:296–307. https://doi.org/10.1016/j.foodhyd.2018.05.019

  16. Hu G (2014) Functional food gums (2nd ed.)c. Chemical Industry Press, Beijing

  17. Ji L, Xue Y, Zhang T, Li Z, Xue C (2017) The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels. Food Hydrocoll 63:77–84. https://doi.org/10.1016/j.foodhyd.2016.08.011

  18. Jiao B et al (2018) Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocoll 77:329–335. https://doi.org/10.1016/j.foodhyd.2017.10.009

  19. Korzeniowska M, Cheung IW, Li-Chan EC (2013) Effects of fish protein hydrolysate and freeze-thaw treatment on physicochemical and gel properties of natural actomyosin from Pacific cod. Food Chem 138:1967–1975. https://doi.org/10.1016/j.foodchem.2012.09.150

  20. Langendorff V, Cuvelier G, Launay B, Michon C, Parker A, De Kruif CG (1999) Casein micelle/iota carrageenan interactions in milk: influence of temperature. Food Hydrocoll 13:211–218. https://doi.org/10.1016/S0268-005X(98)00087-3

  21. Langendorff V, Cuvelier G, Michon C, Launay B, Parker A, De Kruif CG (2000) Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocoll 14:273–280. https://doi.org/10.1016/S0268-005X(99)00064-8

  22. Le XT, Turgeon SL (2013) Rheological and structural study of electrostatic cross-linked xanthan gum hydrogels induced by β-lactoglobulin. Soft Matter 9:3063. https://doi.org/10.1039/c3sm27528k

  23. Le XT, Rioux LE, Turgeon SL (2017) Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv Colloid Interf Sci 239:127–135. https://doi.org/10.1016/j.cis.2016.04.006

  24. Li X, Liu Y, Li N, Xie D, Yu J, Wang F, Wang J (2016) Studies of phase separation in soluble rice protein/different polysaccharides mixed systems. LWT Food Sci Technol 65:676–682. https://doi.org/10.1016/j.lwt.2015.08.064

  25. Liceaga AM, Hall F (2019) Nutritional, functional and bioactive protein hydrolysates. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic Press, Oxford, pp 456–464. https://doi.org/10.1016/B978-0-08-100596-5.21776-9

  26. Liu X, Zhang T, Xue Y, Xue C (2019) Changes of structural and physical properties of semi-gel from Alaska pollock surimi during 4°C storage. Food Hydrocoll 87:772–782. https://doi.org/10.1016/j.foodhyd.2018.09.011

  27. Monteiro SR, Lopes-da-Silva JA (2017) Effect of the molecular weight of a neutral polysaccharide on soy protein gelation. Food Res Int 102:14–24. https://doi.org/10.1016/j.foodres.2017.09.066

  28. Ni Y, Wen L, Wang L, Dang Y, Zhou P, Liang L (2015) Effect of temperature, calcium and protein concentration on aggregation of whey protein isolate: formation of gel-like micro-particles. Int Dairy J 51:8–15. https://doi.org/10.1016/j.idairyj.2015.07.003

  29. Nieto Nieto TV, Wang Y, Ozimek L, Chen L (2016) Improved thermal gelation of oat protein with the formation of controlled phase-separated networks using dextrin and carrageenan polysaccharides. Food Res Int 82:95–103. https://doi.org/10.1016/j.foodres.2016.01.027

  30. Nigmatullin CM, Nesis KN, Arkhipkin AI (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54:9–19. https://doi.org/10.1016/S0165-7836(01)00371-X

  31. Niu F, Zhou J, Niu D, Wang C, Liu Y, Su Y, Yang Y (2015) Synergistic effects of ovalbumin/gum arabic complexes on the stability of emulsions exposed to environmental stress. Food Hydrocoll 47:14–20. https://doi.org/10.1016/j.foodhyd.2015.01.002

  32. Petcharat T, Benjakul S (2018) Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocoll 77:746–753. https://doi.org/10.1016/j.foodhyd.2017.11.016

  33. Postma J, Altemüller HJ (1990) Bacteria in thin soil sections stained with the fluorescent brightener calcofluor white M2R soil. Biol Biochem 22:89–96. https://doi.org/10.1016/0038-0717(90)90065-8

  34. Raei M, Rafe A, Shahidi F (2018) Rheological and structural characteristics of whey protein-pectin complex coacervates. J Food Eng 228:25–31. https://doi.org/10.1016/j.jfoodeng.2018.02.007

  35. Ren C, Xiong W, Peng D, He Y, Zhou P, Li J, Li B (2018) Effects of thermal sterilization on soy protein isolate/polyphenol complexes: aspects of structure, in vitro digestibility and antioxidant activity. Food Res Int 112:284–290. https://doi.org/10.1016/j.foodres.2018.06.034

  36. Shahsavani Mojarrad L, Rafe A (2018) Rheological characteristics of binary composite gels of wheat flour and high amylose corn starch. J Texture Stud 49:320–327. https://doi.org/10.1111/jtxs.12302

  37. Slizyte R, Rommi K, Mozuraityte R, Eck P, Five K, Rustad T (2016) Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnol Rep 11:99–109

  38. Souza CJF, Garcia-Rojas EE (2017) Interpolymeric complexing between egg white proteins and xanthan gum: effect of salt and protein/polysaccharide ratio. Food Hydrocoll 66:268–275. https://doi.org/10.1016/j.foodhyd.2016.11.032

  39. Spotti MJ, Santiago LG, Rubiolo AC, Carrara CR (2012) Mechanical and microstructural properties of milk whey protein/espina corona gum mixed gels. LWT Food Sci Technol 48:69–74. https://doi.org/10.1016/j.lwt.2012.02.023

  40. Villanueva M, Ronda F, Moschakis T, Lazaridou A, Biliaderis CG (2018) Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels. Food Hydrocoll 79:20–29. https://doi.org/10.1016/j.foodhyd.2017.12.022

  41. Wang W, Shen M, Liu S, Jiang L, Song Q, Xie J (2018) Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: the effect of salt addition. Carbohydr Polym 192:193–201. https://doi.org/10.1016/j.carbpol.2018.03.064

  42. Wu M, Wang J, Ge Q, Yu H, Xiong YL (2018) Rheology and microstructure of myofibrillar protein–starch composite gels: comparison of native and modified starches. Int J Biol Macromol 118:988–996. https://doi.org/10.1016/j.ijbiomac.2018.06.173

  43. Xu X, Luo L, Liu C, Zhang Z, McClements DJ (2017) Influence of electrostatic interactions on behavior of mixed rice glutelin and alginate systems: pH and ionic strength effects. Food Hydrocoll 63:301–308. https://doi.org/10.1016/j.foodhyd.2016.09.005

  44. Xue Y, Liu X, Zhang L, Lin D, Xu J, Xue C (2011) Effects of alginate gel on rheological properties of hair-tail (Trichiurus lepturus) surimi. J Ocean Univ China 10:191–196. https://doi.org/10.1007/s11802-011-1752-2

  45. Yang Z, Yang H, Yang H (2018) Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocoll 75:164–173. https://doi.org/10.1016/j.foodhyd.2017.08.032

  46. Zhang Z, Arrighi V, Campbell L, Lonchamp J, Euston SR (2018) Properties of partially denatured whey protein products: viscoelastic properties. Food Hydrocoll 80:298–308. https://doi.org/10.1016/j.foodhyd.2017.12.039

  47. Zhang M, Sun C, Li Q (2019) Interaction between the polysaccharides and proteins in semisolid food systems. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic Press, Oxford, pp 439–445. https://doi.org/10.1016/B978-0-08-100596-5.21474-1

  48. Zhuang X, Han M, Jiang X, Bai Y, Zhou H, Li C, Xu XL, Zhou GH (2019) The effects of insoluble dietary fiber on myofibrillar protein gelation: microstructure and molecular conformations. Food Chem 275:770–777. https://doi.org/10.1016/j.foodchem.2018.09.141

Download references


The authors thank Mrs. Yang for the CLSM experimental support.


This work is financially supported by the National Natural Science Funds (No. 31571865).

Author information

Correspondence to Yong Xue.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 373 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, X., Yang, Y. et al. Improved gelation of polysaccharides with the formation of phase-separated networks using the giant squid hydrolysates. Rheol Acta (2020). https://doi.org/10.1007/s00397-020-01190-z

Download citation


  • The giant squid hydrolysate
  • Konjac glucomannan-κ-carrageenan-locust bean gum gel
  • Gel properties
  • Electrostatic repulsion
  • Phase-separated networks
  • Molecular weight